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SUMMARY
Transcripts encoding membrane and secreted proteins are known to associate with the endoplasmic retic-
ulum (ER) through translation. Here, using cell fractionation, polysome profiling, and 30 end sequencing, we
show that transcripts differ substantially in translation-independent ER association (TiERA). Genes in certain
functional groups, such as cell signaling, tend to have significantly higher TiERA potentials than others, sug-
gesting the importance of ER association for their mRNA metabolism, such as localized translation. The
TiERA potential of a transcript is determined largely by size, sequence content, and RNA structures. Alterna-
tive polyadenylation (APA) isoforms can have distinct TiERA potentials because of changes in transcript fea-
tures. The widespread 30 UTR lengthening in cell differentiation leads to greater transcript association with
the ER, especially for genes that are capable of expressing very long 30 UTRs. Our data also indicate that
TiERA is in dynamic competition with translation-dependent ER association, suggesting limited space on
the ER for mRNA association.
INTRODUCTION

The 30 UTR of mRNA plays an important role in post-transcrip-

tional control of gene expression, such as stability, translation,

and localization (Kejiou and Palazzo, 2017; Mayr, 2018). Much

of its regulatory function is mediated through embedded

sequence and structure motifs (Van Nostrand et al., 2020),

such as microRNA (miRNA) target sites (Bartel, 2018) and

various AU-rich and GU-rich elements (Garneau et al., 2007)

for stability and/or translational controls. 30 UTR size per se

also appears to be a feature of mRNA metabolism, such as sta-

bility regulation through Upf1 binding (Hogg and Goff, 2010). In

addition, the 30 UTR has been found increasingly to play a role

in mRNA localization, especially in polarized cells (Mayr, 2018;

Tushev et al., 2018).

Most mammalian mRNA genes harbor multiple cleavage and

polyadenylation sites (PASs), leading to alternative polyadenyla-

tion (APA) isoforms with different 30 UTR sizes (Derti et al., 2012;

Hoque et al., 2013). The APA isoform expression profile of a gene

differs substantially across cell types (Lianoglou et al., 2013;
This is an open access article under the CC BY-N
Wang et al., 2008; Zhang et al., 2005) and is dynamically regu-

lated under various conditions, such as cell proliferation (Sand-

berg et al., 2008), differentiation and development (Ji et al.,

2009; Ji and Tian, 2009; Shepard et al., 2011), oncogenesis (Fu

et al., 2011; Masamha and Wagner, 2018; Masamha et al.,

2014; Mayr and Bartel, 2009; Morris et al., 2012; Singh et al.,

2009), cell activation (Berg et al., 2012; Flavell et al., 2008), and

cellular stress (Hollerer et al., 2016; Sadek et al., 2019; Zheng

et al., 2018). Regulation of APA is an important layer of the

gene expression program (Elkon et al., 2013; Gruber and Zavo-

lan, 2019; Tian and Manley, 2017).

mRNAs encoding membrane and secreted proteins typically

undergo translation on the endoplasmic reticulum (ER), leading

to the distinct subcellular structure of rough ER (Voeltz et al.,

2002). The signal recognition particle (SRP), which binds to the

nascent polypeptide coming out from a translating ribosome, di-

rects themRNA to the cytosolic surface of the ER (Akopian et al.,

2013). Therefore, ER association of these mRNAs is translation

dependent. Similarly, mRNAs have also been found to be

associated with other organelles, such as endosomes and
Cell Reports 36, 109407, July 20, 2021 ª 2021 The Author(s). 1
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mitochondria (Cioni et al., 2019a; Higuchi et al., 2014; Tsuboi

et al., 2020; Williams et al., 2014), often together with the ribo-

some (Béthune et al., 2019). On the other hand, several studies

have indicated that not all ER-associated transcripts encode

membrane or secreted proteins (Reid and Nicchitta, 2012) and

that mRNAs can associate with the ER independent of transla-

tion (Cui and Palazzo, 2014; Reid and Nicchitta, 2015). To what

extent different transcript features, particularly the 30 UTR, are
involved in these organelle associations is largely unclear.

Here, using subcellular fractionation, polysome profiling, and 30

end sequencing, we examine transcripts associated with the

ER in proliferating and differentiated mouse C2C12 cells. We

identify transcript features that facilitate translation-independent

ER association (TiERA). We analyze functions of encoded pro-

teins associated with transcripts with high or low TiERA poten-

tials. By comparing 30 UTR isoforms genome wide, we examine

the role of APA in regulation of TiERA in proliferating and differ-

entiated cells.

RESULTS

APA isoforms differ in subcellular distribution
We were interested in understanding how APA isoforms are

distributed in the cell. To this end, we used the sequential deter-

gent wash protocol developed by Jagannathan et al. (2011) to

fractionate proliferating C2C12 myoblast cells into cytosol,

membrane, and insoluble parts (Figure 1A; see STAR Methods

for details). Western blot analysis indicated enrichment of

several marker proteins for the respective fractions (Figure 1B);

i.e., the cytoskeleton protein a-tubulin for the cytosol fraction,

the ER-resident protein GRP94 for the membrane fraction (with

some presence in the insoluble fraction as well), and the histone

protein H2A.X for the insoluble fraction.

We next extracted RNAs from these fractions and subjected

them to RNA sequencing (RNA-seq) analysis (Figure 1A). As ex-

pected, differential gene expression analysis indicated substan-

tial transcriptome differences between the three fractions (Fig-

ure S1A). A much higher proportion of reads in the membrane

fraction was aligned to the mitochondrial genome (6%)

comparedwith reads in the other two fractions (<1%), confirming

that the membrane fraction contained membranous organelles,

such as mitochondria (Figure S1B). In contrast, a much higher

proportion of intronic reads was found in the insoluble fraction

(20%) compared with other fractions (4%), indicating enrich-

ment of pre-mRNAs, likely chromatin bound, in this fraction

(Figure S1B).

Intriguingly, higher proportions of reads in membrane and

insoluble fractions were mapped to 30 UTRs (40% and 34%,

respectively; Figure S1B) compared with the cytosol fraction

(28%), suggesting that mRNA isoforms with different 30 UTR
sizes might be differentially distributed in the three fractions.

To explore this, we analyzed the RNA-seq data using APAlyzer,

a computational program our lab developed recently to examine

relative expression of 30 UTR isoforms in different samples

(Wang and Tian, 2020). As illustrated in Figure 1C (see STAR

Methods for details), a relative expression (RE) value, represent-

ing the ratio of RNA-seq read density in the alternative 30 UTR
(aUTR) to that in the common 30 UTR (cUTR), was calculated
2 Cell Reports 36, 109407, July 20, 2021
for each gene. aUTR and cUTR were demarcated by the first

PAS in the 30 UTR that was conserved in mammals, as annotated

in the comprehensive PAS database PolyA_DB v.3 (Wang et al.,

2018). Therefore, a larger RE value indicates a higher abundance

of long 30 UTR isoforms relative to that of short 30 UTR isoforms.

Interestingly, we found that RE values were significantly higher in

membrane and insoluble fractions compared with the cytosol

fraction (p < 2.2 3 10�16; Figure 1D). An example gene, Nmt1,

which contains two PASs in its 30 UTR, is shown in Figure 1E.

Note the difference in read coverage in its 30 UTR among the

three fractions (Figure 1E, right). Also discernable are higher

levels of intronic reads in the insoluble fraction, consistent with

presence of pre-mRNAs (Figure 1E, left).

To corroborate the RNA-seq result, we repeated the same

fractionation protocol and subjected RNAs to 30 region extrac-

tion and deep sequencing (30READS), a method our lab devel-

oped previously to specifically interrogate 30 ends of the poly(A)+

transcriptome (Hoque et al., 2013; Zheng et al., 2016; Figure 1F).

Because the insoluble fraction contained a mixture of pre-

mRNAs and mature mRNAs (RNA-seq data) and included

some residual membrane fraction (western blot data), we

focused on cytosol and membrane fractions only. Principal-

component analysis supported the similarity in gene expression

between RNA-seq data and 30READS data (Figure S1C).

To measure relative distribution between membrane and

cytosol fractions for any transcript with a defined PAS, we calcu-

lated a ratio, called the membrane localization score (MLS),

based on expression of the transcript (using reads per million

mapped [RPM]) in membrane versus cytosol fractions (Fig-

ure 1G). Using the top two most abundant 30 UTR APA isoforms

of each gene for comparison, we found that genes whose long 30

UTR isoform had a higher MLS than its short 30 UTR isoform

(DMLS > log2(1.2), p < 0.05, Fisher’s exact test) outnumbered

those showing the opposite trend by 2.2-fold (548 versus 251;

Figure 1H), indicating a global trend showing that long 30 UTR
isoforms were more enriched in the membrane fraction than

short 30 UTR isoforms.

To further examine how 30 UTR size affects the MLS, we

divided genes into five bins based on the size of aUTR, the

sequence between short and long isoforms (Figure 1I). Based

on median DMLSs (long isoform minus short isoform) of each

gene bin, we found that the longer the aUTR, the higher the

DMLS. For example, genes with an aUTR size of more than

1,634 nt (bin 5, top 20%) showed a much higher DMLS than

genes with an aUTR size of less than 120 nt (bin 1, bottom

20%, p = 1.6 3 10�14, Wilcoxon test; Figure 1I). Therefore,

aUTR size has a positive effect on the MLS, resulting in long 30

UTR isoforms being more likely than short 30 UTR isoforms in

the membrane fraction. Gene Ontology (GO) analysis identified

a few terms enriched for genes in bin 1 or bin 5 (Figure S1D)

even though their p values were marginally significant, with the

exceptions of the ‘‘ribosome’’ and ‘‘cytosolic part’’ terms that

were enriched for bin 1 genes (Figure S1D).

Translating transcripts with long 30 UTRs are enriched
on the ER
Because the membrane fraction could contain RNAs from multi-

ple organelles, including the ER, mitochondria, nucleoplasm,



Figure 1. 30 UTR isoforms are distributed differently in subcellular compartments

(A) Schematic showing subcellular fractionation of mouse C2C12 myoblasts into cytosol, membrane, and insoluble fractions, followed by RNA-seq.

(B) Western blot analysis of several proteins enriched for distinct subcellular compartments.

(C) Schematic showing analysis of 30 UTR size difference across fractions using RNA-seq reads. The formula for relative expression (RE) is shown.

(D) Cumulative density function (CDF) curves of RE values of cytosolic, membrane, and insoluble fractions. p values are based on K-S test.

(E) UCSC tracks showing an example gene, Nmt1. Conservation is based on 100 vertebrates. Pictures of the whole gene (left) and the last exon (right) are shown.

(F) Schematic showing subcellular fractionation of mouse C2C12 myoblasts into cytosol and membrane fractions, followed by 30 region extraction and deep

sequencing (30READS).
(G) Schematic showing analysis of 30 UTR isoform abundance inmembrane versus cytosol fractions based on 30READS data. The alternative 3’ UTR (aUTR) is the

region present in the long isoform but absent from the short isoform. The MLS formula is indicated. RPM, reads per million mapped (PAS reads only).

(H) Scatterplot comparing the MLS of the long 30 UTR isoform (y axis) and short 30 UTR isoform (x axis). Each dot represents a gene. The two most abundant 30

UTR isoforms (based on 30READS data) are selected from each gene for comparison. Those with significantly different MLSs (p < 0.05, Fisher’s exact test) are

highlighted in color.

(I) Relationship between aUTR size and MLS difference between long and short isoforms. Genes are grouped into five similarly sized bins (~775 genes) based on

their aUTR size (size ranges are shown). The p value (Wilcoxon test) comparing bin 1 and bin 5 genes is indicated. The median of each bin is plotted. Error bars

indicate SEM.
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etc., we next wanted to focus on translating RNAs in the mem-

brane fraction. We reasoned that transcripts undergoing transla-

tion in the membrane fraction should come mostly from the

rough ER, the only known organelle that harbors substantial pro-

tein synthesis. To this end, we carried out polysome profiling us-
ing cytosol and membrane fractions from C2C12 myoblast cells

(Figure 2A). Consistent with a previous report (Lerner and Nic-

chitta, 2006), our polysome profiles showed a higher poly-

some-to-monosome content ratio in the membrane fraction

compared with that in the cytosol fraction (Figure 2B),
Cell Reports 36, 109407, July 20, 2021 3



Figure 2. P profiling analysis reveals differences in ER association between 30 UTR isoforms

(A) Schematic of cell fractionation and P profiling of C2C12myoblasts. RNAs extracted from Polysome (P) and Monosome (M) fractions were subject to 30READS
analysis.

(B) Polysome profiles of cytosol and membrane fractions. P and M fractions are indicated. Gray lines indicate fractions.

(C) Scatterplot comparing the MLS of the long 30 UTR isoform (y axis) and short 30 UTR isoform (x axis). Genes whose isoforms have significantly different MLSs

(p < 0.05, DEXSeq) are highlighted in color. See Figure 1G for MLS calculation.

(D) Relationship between aUTR size andMLS difference (DMLS) between long and short isoforms in P andM samples. Genes are grouped into five similarly sized

bins based on their aUTR size (see Figure 1I for details). The p value (Wilcoxon test) comparing bins 1 and 5 is indicated. The median of each bin is plotted. Error

bars indicate SEM.

(E) Scatterplots comparing MLSs among total cell extract (total), P, and M samples. Pearson correlation coefficients are indicated.
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suggesting that translation is more active on the ER than in

cytosol. We then extracted RNAs from monosome (M) and poly-

some (P) portions of each fraction (Figure 2B) and subjected

them to 30READS analysis. As with the total cell extract, we

calculated an MLS for each transcript (represented by its PAS)

in P and M samples.

Similar to the total cell extract result, P andM samples showed

that long 30 UTR isoforms tended to have a higherMLS than short

30 UTR isoforms (Figure 2C). The numbers of genes showing a

long 30 UTR isoform > a short 30UTR isoform were 3.1- and

2.4-fold greater than the numbers of genes showing a short 30

UTR isoform > a long 30 UTR isoform, respectively, in P and M

samples (significant difference was based on DMLS > log2(1.2)

or < �log2(1.2), p < 0.05, DEXseq; Figure 2C). A correlation be-

tween aUTR size and DMLS was readily discernable with M
4 Cell Reports 36, 109407, July 20, 2021
and P data (Figure 2D). Genes in bin 1 (the shortest aUTRs, bot-

tom 20%) and those in bin 5 (the longest aUTRs, top 20%) had

significantly different DMLSs in both fractions (p < 2.2 3 10�16

and p = 3.93 10�15 for P andM samples, respectively; Wilcoxon

test; Figure 2D).

Based on the MLSs of all transcripts, we found modest corre-

lations in P versus M (r = 0.52, Pearson correlation, Figure 2E,

bottom left) and in M versus total cell extract (r = 0.51; Figure 2E,

top right). In contrast, P and total cell extracts were much better

correlated in their MLSs (r = 0.84; Figure 2E, bottom right). These

results indicate that transcript MLSs in total cell extracts

were attributable chiefly to P-associated RNAs. Therefore, the

MLS mainly reflects transcript distribution between the rough

ER, where membrane-associated P reside, and the cytosol.

Taken together, polysome profiling data confirm that differential



Figure 3. Identification of transcripts with translation-independent ER association (TiERA)

(A) Schematic of the experiment using Puro to inhibit translation in C2C12 myoblasts. Extracted RNAs were subjected to 30READS analysis.

(B) Scatterplot comparing transcript MLSs between Puro-treated (Puro+) and untreated (Puro�) samples.

(C) Identification of transcripts with translation-independent (group I) or translation-dependent (group II) ER association using Gaussian mixture modeling. The

number of transcripts and median MLS for each group in Puro+ or Puro� samples are indicated. There were 1,604 transcripts that were not classified (gray

circles).

(D) Pie charts of group I and group II transcripts, displaying proportions of transcripts encoding secreted, membrane, mitochondrial, or other proteins. Protein

location annotation was based on the MetazSecKB database.

(E) Scatterplot comparing the MLS of the long 30 UTR isoform (y axis) and short 30 UTR isoform (x axis) in Puro� (left) and Puro+ (right) samples. Genes whose

isoforms have significantly different MLSs (p < 0.05, DEXSeq) are highlighted in color.

(F) Relationship between aUTR size and MLS difference between long and short isoforms (DMLS) for group I and group II genes in Puro+ and Puro� samples.

Genes are grouped into aUTR size bins as in Figure 1I. The p value (Wilcoxon test) comparing bins 1 and 5 is indicated. The median of each bin is plotted. Error

bars indicate SEM.

(G) Bar graph showing DMLS of genes with long aUTRs (top 20%, bin 5) in Puro+ and Puro� samples. Group I and II genes are shown separately. Data are from

(E). The p value (Wilcoxon test) comparing DMLS of each group with the value 0 (no difference) is indicated. ***p < 0.001; n.s., p > 0.05. p values (Wilcoxon test)

comparing different groups are also shown. The median of each group is shown. Error bars indicate SEM.
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ER association between 30 UTR isoforms are responsible for the

difference in distribution in membrane versus cytosol fractions.

Transcriptome-wide identification of TiERA
Wenext wanted to find out how 30 UTR-mediated ER association

was related to translation. To this end, we treated C2C12

myoblast cells with puromycin, an aminoacyl transfer RNA

analog that inhibits translation through ejection of nascent poly-

peptide from the ribosome (Nathans, 1964), and extracted RNAs

from cytosolic and membrane fractions at different time points

for 30READS analysis (Figure 3A). Based on transcript MLSs,

the data for 30-min and 60-min puromycin treatments were

well correlated (r = 0.70, Pearson correlation; Figure S2A), and
so were data for non-puromycin and 0-min puromycin treatment

(r = 0.83, Pearson correlation; Figure S2A). In contrast, a much

lower correlation was observed between no puromycin treat-

ment or 0-min treatment samples and 30-min or 60-min treat-

ment samples (r = 0.31–0.35, Pearson correlation; Figure S2A).

We therefore analyzed the former two as replicates for no puro-

mycin (Puro�) and the latter two as replicates for Puro treatment

(Puro+).

Transcriptome-wide comparison of MLSs in Puro+ versus

Puro� samples appeared to indicate two transcript populations

(Figure 3B). We thus employed a Gaussian mixture model to

separate these two based onMLSs in Puro+ and Puro� samples

(Figure 3C; see STARMethods for details). Transcripts in the first
Cell Reports 36, 109407, July 20, 2021 5



Table 1. Top BPs associated with TiERA potentials of group I and

group II gene transcripts

TiERA potentiala GO Term p Value

Group I

genes

high regulation of Rho protein signal

transduction

9.9E�09

regulation of MAPK cascade 1.3E�07

regulation of GTPase activity 1.9E�07

regulation of cell-matrix adhesion 4.0E�07

head development 6.0E�07

low nucleobase-containing small molecule

metabolic process

1.0E�07

amide biosynthetic process 2.2E�07

drug metabolic process 1.5E�06

ribonucleoprotein complex biogenesis 2.5E�06

mitochondrion organization 3.2E�05

Group II

genes

high enzyme linked receptor protein

signaling pathway

3.6E�06

semaphorin-plexin signaling pathway 7.7E�06

regulation of cell size 8.8E�06

negative regulation of chemotaxis 3.6E�05

neuron projection guidance 5.5E�05

low protein localization to endoplasmic

reticulum

6.9E�04

ER to Golgi vesicle-mediated transport 1.5E�03

negative regulation of hydrolase activity 3.8E�03

regulation of cell killing 8.1E�03

unsaturated fatty acid biosynthetic

process

1.4E�02

aHigh and low TiERA potentials are the top 20%and bottom 20%ofMLS,

respectively, of group I or group II transcripts in Puro+ cells.
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population (red dots in Figure 3C), called group I, showed a good

MLS correlation between Puro+ and Puro� samples, indicating

that their ER association is translatio independent. In fact, their

MLS in Puro+ were slightly higher than those in Puro� samples

(median = �0.04 and �0.31, respectively; Figures 3C; p <

2.23 10�16, K-S test; Figure S2B), indicating that their ER asso-

ciation was enhanced by translational inhibition. In contrast,

transcripts in the second population, called group II (blue dots

in Figure 3C), showed significantly lower MLSs in Puro+ samples

than in Puro� samples (median = �0.03 and 3.54, respectively;

Figure 3C; p < 2.23 10�16, K-S test; Figure S2B), indicating that

their ER association depend on translation. Notably, groups I

and II transcripts showed similar MLSs in Puro+ samples (me-

dian = �0.04 and �0.03, respectively; Figure 3C), indicating

that ER association is comparable between the two groups

when translation is inhibited.

We found that 53%and 10%of the group II transcripts encoded

membrane proteins and secreted proteins, respectively, based on

the secretome and subcellular proteome knowledgebase Meta-

zSecKB (Meinken et al., 2015). In contrast, 10% and 1% of the

group I transcripts fell into these two categories, respectively (Fig-

ure 3D). Transcripts encoding mitochondrial proteins were

depleted from group II (2%; Figure 3D) compared with group I

(8%; Figure 3D) or all transcripts (7%; Figure S2C). In addition,
6 Cell Reports 36, 109407, July 20, 2021
GO analysis of these two groups showed that group I transcripts

tended to encode proteins localized to the nucleus, microtubules,

mitochondria, and cytosol (Table S1), whereas proteins ex-

pressed from group II transcripts were more likely to be located

at the cell surface, ER membrane, receptor complex, and other

membrane structures (Table S2). Thus, the GO result is in good

agreement with the result based onMetazSecKB, further support-

ing the view that group II is enriched with transcripts encoding

membrane and secreted proteins. These results indicate that

our Gaussian mixture model using MLS data from Puro� and

Puro+ samples effectively separated transcripts that are associ-

ated with the ER through translation (group II transcripts), which

tend to encodemembrane and secreted proteins, and transcripts

that are associatedwith the ER independent of translation (group I

transcripts). For simplicity, we call the latter TiERA (Translation-in-

dependent ER Association).

30 UTR isoform analysis corroborates TiERA
We found that genes whose long isoform > short isoform in ER

association (DMLS > log2(1.2), p < 0.05, DEXseq) outnumbered

those whose long isoform < short isoform in ER association

(DMLS <�log2(1.2), p < 0.05, DEXseq) by 2.7-fold in Puro� sam-

ples (Figure 3E, left). Interestingly, this bias increased to 7.1-fold

in Puro+ samples (Figure 3E, right), indicating that inhibition of

translation accentuates 30 UTR-mediated TiERA, in line with

whole-transcriptome analysis result (above).

To further explore the effect of the 30 UTR on TiERA, we

analyzed group I and group II gene transcripts separately in

Puro+ and Puro� samples and divided genes in each group into

5 bins based on aUTR size (as in Figure 1I). We found that

DMLSs of group I genes appeared to be greater in Puro+ samples

than in Puro� samples across all aUTR size bins (Figure 3F), con-

firming that translation inhibition enhances TiERA. For genes with

the longest aUTRs (bin 5, top 20%), DMLSs between 30 UTR iso-

forms was significant higher in Puro+ versus Puro� samples (0.83

versus 0.53, p = 2.7 3 10�11, Wilcoxon test; Figure 3G). In

contrast, although DMLSs of group II genes followed a similar

aUTR size-based increase in Puro+ samples (dashed blue line,

Figure 3F), their DMLS in Puro� samples did not correlate with

aUTR size (solid blue line, Figure 3F). For group II genes in bin 5,

DMLSwas significant only in Puro+ samples (p < 0.001 compared

with 0, Wilcoxon test; Figure 3G) but not in Puro� samples

(p > 0.05 compared with 0, Wilcoxon test; Figure 3G). Therefore,

30 UTR size has an influence on MLSs of group II transcripts

only when translation is inhibited. Because there is no significant

difference in DMLS between group I and group II genes in

Puro+ samples (first two bars, p = 0.58, Wilcoxon test; Figure 3G),

TiERA is equally effective on transcripts from both groups.

Together, our results comparing 30 UTR isoforms corroborate

the analysis based on the whole transcriptome and indicate that

30 UTR-mediated ER association is translation independent.

Transcripts with different TiERA potentials belong to
distinct functional groups
We next wanted to know what kinds of transcripts tend to have

high or low TiERA potentials. Using GO analysis, we compared

top and bottom transcripts based on their MLS in Puro+ samples.

For group I genes, top biological process (BP) terms associated
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with transcripts having high TiERA potentials tended to be related

to cell signaling (Table 1), such as ‘‘regulation of Rho protein signal

transduction’’ and ‘‘regulation of MAPK cascade,’’ whereas those

associated with transcripts having low TiERA potentials tended to

be related to metabolism, such as ‘‘nucleobase-containing small

molecule metabolic process’’ and ‘‘amide biosynthetic process.’’

Also notable is that several cellular component (CC) terms were

found to be significantly associated with group I gene transcripts

with low TiERA potentials (Table S4), including ‘‘mitochondrial en-

velope’’ and ‘‘ribosomal subunit.’’

Interestingly, signaling-related terms were also found to be

significantly associated with group II gene transcripts having

high TiERA potentials (Table 1), such as ‘‘enzyme linked receptor

protein signaling pathway’’ and ‘‘semaphoring-plexin signaling

pathway.’’ Consistently, the top CC term enriched for these

transcripts was ‘‘receptor complex’’ (Table S4). In contrast, tran-

scripts having low TiERA potentials in group II genes were en-

riched with BP terms related to protein localization to organelles

(Table 1), such as ‘‘protein localization to endoplasmic reticu-

lum’’ and ‘‘ER to Golgi vesicle-mediated transport,’’ and with

CC terms related to organelle structures (Table S4), such as

‘‘endoplasmic reticulum-Golgi intermediate compartment’’ and

‘‘coasted vesicle.’’ GO data thus indicate that some functional

gene groups have distinct TiERA potentials. Transcripts encod-

ing proteins involved in cell signaling tend to have high TiERA

potentials, whereas those encoding subcellular compartment-

related proteins tend to have low TiERA potentials.

Transcript features determine TiERA
We next examined how transcript features might contribute to

TiERA. Because our APA isoform analyses indicated that 30

UTR size enhances TiERA, we first examined size-related fea-

tures (Figure 4A). Strikingly, the most prominent feature, based

on correlation with TiERA potentials (MLS in Puro+ samples),

was overall transcript size (R2 = 0.42; Figure 4A). Consistently,

CDS, 30 UTR, and 50 UTR sizes had positive contributions to

TiERA (R2 = 0.34, 0.14, and 0.08, respectively; Figure 4A). Intrigu-

ingly, although exon number correlated positively with TiERA,

likely because of its confounding association with transcript

size, the exon-exon junction (EJC) density had a negative effect

on TiERA (R2 = 0.16; Figure 4A). Size-related features altogether

explained 50% of TiERA variance (R2 = 0.50; Figure 4A).

We then examined how sequence motifs are related to TiERA.

Using dimer frequencies, we found that A/U-rich dimers, such as

AA, AU, UA, and UU, had negative correlations with TiERA (Fig-

ure 4B), whereas dimers containing G or C, such as CC, CU, CA,

andGG, were correlated positively with TiERA (Figure 4B). Dimer

frequencies altogether had an R2 value of 0.15 (Figure 4A). Thus,

although still prominent, sequence content contributed less to

TiERA than size features.

Interestingly, when we used dimer counts for analysis, which

effectively combined dimer frequency and transcript size fea-

tures, we found the top three dimers to be GG, GC, and CC in

all regions, including the whole transcript, CDS, and 30 UTR (Fig-

ures 4C and S3A). The difference between dimer frequency and

dimer counts suggests a synergistic effect between size and

sequence content. We reasoned that this could happen when

certain sequence features become significant only when they
reach a critical length, such as in formation of RNA structures.

To explore this, we carried out RNA structure prediction in

CDS and 30 UTR using RNAfold (Lorenz et al., 2011). Using a

100-nt moving window strategy to obtain the average minimum

free energy (MFE) of predicted RNA structures (see STAR

Methods for details), we found that, indeed, RNA structures in

the 30 UTR and CDS had positive contributions to TiERA, albeit

with low R2 values (R2 = 0.06 and 0.04, respectively, and R2 =

0.07 for two regions combined; Figure 4D). Consistently, tran-

scripts with high TiERA potentials (top 20%) tended to have a

low MFE in the CDS and 30 UTR, and those with low TiERA po-

tentials (bottom 20%) tended to have a high MFE (Figure S3B).

In addition, using genes whose 30 UTR isoforms had significantly

different TiERA potentials, we found that aUTRs tended to have

lower MFEs when long isoforms had higher MLSs than short iso-

forms and vice versa (Figure S3C), further supporting the impor-

tance of RNA structure to TiERA. We also examined the relation-

ship between TiERA potentials and RNA structures using RNA

structures that were identified experimentally by the icSHAPE

(in vivo click selective 2-hydroxyl acylation and profiling experi-

ment) method (Figure 4E; see STAR Methods for details; Sun

et al., 2019). In line with our RNA structure prediction results,

transcripts with highMLSs tended to adoptmore RNA structures

(high icSHAPE Gini indices; Figure 4E) and transcripts with low

MLS tended to contain fewer RNA structures (low icSHAPE

Gini indices; Figure 4E) in CDS and 30 UTR sequences.

We next employed amachine learningmethod, XGBoost (Chen

andGuestrin, 2016), to construct a predictivemodel for TiERA po-

tentials, using all aforementioned features, including size features,

dimer frequencies, and predicted MFE for RNA structures (Fig-

ure 4F). Based on correlation of observed MLS (Puro+ samples)

and predicted MLS, the model performed well for group I and

group II gene transcripts (r = 0.86 and 0.81, respectively, Pearson

correlation coefficients; Figures 4G and 4H). The good perfor-

mance of the predictive model for group II transcripts further sup-

ports the notion that these transcripts follow the same rules as

group I transcripts in TiERA, despite normally being associated

with the ER in a translation-dependent manner.

We next tested our predictive model on 30 UTR isoforms. Over-

all, the predicted DMLSs (long isoform versus short isoform) were

correlated with observed values (r = 0.63; Figure 4I). The lower

correlation coefficient forDMLScomparedwith that forMLS is ex-

pected because the former had more data points for calculation

and, thus, contained high noise levels. Importantly, when APA

genes were divided into five bins based on aUTR size, the corre-

lation between predicted and observed DMLS in group I genes

was much higher for genes with long aUTRs (r = 0.64, bin 5)

compared with genes with short aUTRs (r = 0.35, bin 1) (p =

8.1 3 10�25, t test; Figure 4J). Our results, therefore, indicate

that the TiERA potential of a transcript is its intrinsic property

that is governed by size, sequence content, and RNA structures.

Validation of TiERA difference between APA isoforms
We next set out to validate our global findings with detailed an-

alyses of individual genes. The gene Nmt1 encodes N-myristoyl-

transferase 1, which catalyzes myristoylation, a type of lipid

modification, of its substrate proteins (Meinnel et al., 2020;

Udenwobele et al., 2017). Nmt1 produces two 30 UTR isoforms
Cell Reports 36, 109407, July 20, 2021 7



Figure 4. Transcript features determine TiERA

(A) Regression analysis of size features versus MLS in Puro+ samples. Features are sorted according to individual R2 values. The cumulative R2 value for a given

feature is based on using the feature together with all other features with a better individual R2 value. Red and blue bars denote positive and negative correlations

with MLS, respectively.

(B) As in (A), except that dimer frequencies in the whole transcript are used as features.

(C) As in (A), except that dimer numbers in the whole transcript are used as features.

(D) As in (A), except that the average minimum free energy (MFE) per 100 nt in the 30 UTR or CDS is used as a feature.

(E) CDF plots of icSHAPE Gini indices of the CDS (left) or 30 UTR (right). icSHAPE Gini indices are based on a 20-nt moving window across each sequence.

Transcripts are divided into high-MLS (top 20%, red line), medium-MLS (middle 60%, black line), and low-MLS (bottom 20%, blue line) groups. p values (K-S test)

for significance of the difference between red or blue genes and black genes are indicated. Gene numbers for red and blue genes are also indicated.

(F) Schematic showing construction of a statistical model based on the XGboost program for TiERA potentials. MLSs of group I gene transcripts in Puro+ samples

were used for training. Size, dimer frequency, and average MFE features were used.

(G) Scatterplot comparing the predicted MLS (y axis) and observed MLS (x axis, Puro+ samples) of group I gene transcripts. Pearson correlation coefficient is

indicated.

(H) Same as in (G), except for group II gene transcripts. Pearson correlation coefficient is indicated.

(I) Scatterplot comparing the predicted DMLS between long and short 30 UTR isoforms (y axis) and their observed DMLSs in Puro+ samples (x axis). Pearson

correlation coefficient is indicated.

(J) Pearson correlation coefficients for predicted versus observed DMLSs (long versus short 30 UTR isoforms) for genes with short aUTRs (bin 1, bottom 20%) and

long aUTRs (bin 5, top 20%). Only group I genes are included. The p value (t test) for comparison of the two bins is indicated. The median of each bin is shown.

Error bars indicate standard deviation based on data bootstrapping (20 times).
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that differ substantially in 30 UTR size, with the short and long

isoforms having 337 nt and 3,144 nt in 30 UTRs, respectively (Fig-
ure 5A). They also differ greatly in MLS (�0.90 and 1.21 for short
8 Cell Reports 36, 109407, July 20, 2021
and long isoforms, respectively, Puro+ samples; Figure 5A).

Based on our Gaussian mixture model (Figure 3B), Nmt1 is a

group 1 gene. Interestingly, the long 30 UTR isoform has many



Figure 5. Nmt1 APA isoforms have different TiERA potentials

(A) UCSCGenome Browser tracks showing 30READS data forNmt1. 30 UTR size andMLS for each 30 UTR isoform are indicated. The number of GG dimers is also

indicated.

(B) Northern blot of two Nmt1 APA isoforms. Cyto, cytosolic fraction; Mem, membrane fraction. Puro treatment is indicated. Two isoforms are indicated.

(C) Normalized log2(ratio) of the expression level of the long isoform versus short isoform based on the northern blot result in (B). Normalization is based on the

mean of all samples.

(D) Schematic of the psiCHECK2-Nmt1 30 UTR vector. RLuc, Renilla luciferase.

(E) As in (B), except that APA isoforms expressed from the psiCHECK2-Nmt1 30 UTR vector were analyzed by northern blot. A representative image of three

replicates is shown.

(F) As in (C), except that quantification is based on (E). Error bars indicate standard deviation of three replicates. The p values (t test) for significance of difference

are indicated. **p < 0.05; ***p < 0.01.
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more GG dimers than the short 30 UTR isoform (347 versus 120),

the top dimer in 30 UTRs for contribution to TiERA based on

dimer count (Figure S3A).

Using northern blot analysis with a probe targeting the com-

mon region of the two isoforms, we examined the relative abun-

dance of the two isoforms in cytosol and membrane fractions in

C2C12 myoblasts (Figures 5B and S4A). In cells without Puro,

the relative transcript abundance between the long isoform

and short isoform was 3.4-fold higher in the membrane fraction

compared with the cytosol (Figures 5B and 5C), supporting the

notion that the long isoform is better associated with the ER

than the short isoform. The relative abundance increased to

7.2-fold in cells treated with Puro (Figures 5B and 5C), corrobo-

rating the notion that translational inhibition enhances TiERA.

To further confirm the contribution of Nmt1’s 30 UTR to TiERA,

we cloned the full 30 UTR of the long isoform into the psiCHECK2

vector, placing it afterRenilla luciferase CDS (Figure 5D). Northern

blot analysis of C2C12 myoblasts transfected with the reporter

showed two expected isoforms (Figure 5E). Importantly, the

long isoform to short isoform abundance ratio was 9-fold higher
in the membrane fraction compared with that in the cytosol.

This ratio difference increased to 61-fold when cells were treated

with Puro (Figures 5E and 5F). A similar result was obtained when

cells were treated with harringtonine, an translational inhibitor that

functions at the initiation step (Huang, 1975), indicating that our

observations based on Puro treatment are primarily due to trans-

lational inhibition as opposed to Puro-induced proteostatic stress

(Aviner, 2020; Salomons et al., 2009; Figures S4B and S4C). Our

validation data on Nmt1 isoforms are in good agreement with

the conclusions from global analyses.

Distinct TiERA potentials in proliferating and
differentiated cells
Proliferating C2C12 myoblasts can differentiate into myotubes,

during which APA profiles change substantially (Ji et al., 2009;

Li et al., 2015). We next wanted to find out whether the TiERA po-

tential of a transcript might change during cell differentiation.

Using the same procedures for cell fractionation, polysome

profiling, and 30READS, we calculated MLSs in P and M portions

of membrane and cytosol fractions of differentiated C2C12
Cell Reports 36, 109407, July 20, 2021 9



Figure 6. TiERA and APA in cell differentia-

tion

(A) Scatterplot comparing transcript MLS in

proliferating C2C12 myoblast cells (x axis) and

differentiated myotube cells (y axis). P (left) and M

(right) data are shown. Group I and II genes are

indicated by different colors. Pearson correlation

coefficients are shown for the two gene groups

with matching colors.

(B) Relationship between aUTR size and DMLS

(long versus short isoforms) for group I genes in P

and M fractions of myoblasts and myotube sam-

ples. Genes are grouped into five similarly sized

bins based on their aUTR size, as in Figure 1I. The

p value (Wilcoxon test) comparing bins 1 and 5 is

indicated. The median of each bin is shown. Error

bars indicate SEM.

(C) Bar graph showing MLS of group I genes with

long aUTRs (bin 5 in B) in myoblasts (MBs) and

myotubes (MTs). P-values (Wilcoxon test)

comparing transcript groups are indicated. The

median of each sample is shown. Error bars are

SEM.

(D) CDF plots showing gene expression changes

(log2 ratio of RPM) between proliferating C2C12

MB and differentiated C2C12 MT cells for group I

genes (red), group II genes (blue), and all genes

(black). The median for each gene set is indicated.

p values (K-S test) for significanceof difference (red

or blue genes versus black genes) are indicated.

The gene number for each group is also shown.

(E) CDF plots showing RE difference (RED) of 30 UTR isoforms in C2C12 differentiation. RED is based on RE of two 30 UTR isoforms. The formulas for RE and RED

are shown. Genes are divided into three groups based on DMLS between 30 UTR isoforms; i.e., long isoform > short isoform (red line), short isoform > long

isoform (blue line), and no significant difference between isoforms (black line). MLSs are from Puro+ cells (Figure 3). Only group I genes are included. p values

(K-S test) for significance of difference (red or blue genes versus black genes) are indicated. Gene numbers are also indicated.

Article
ll

OPEN ACCESS
myotube cells (Figure S5A). Overall, group I and II gene tran-

scripts showed similar MLS correlation levels between myo-

blasts and myotubes in P samples (Pearson correlation r =

0.67 and 0.71, respectively; Figure 6A). Slightly more modest

correlations were found in M samples (Pearson correlation r =

0.62 and 0.64, respectively; Figure 6A). As expected, the MLSs

of group II genes were generally higher than those of group I

genes in P samples, and this difference was much subdued in

the M sample (compare blue and red dot distributions in the

P and M scatterplots; Figure 6A). This result is consistent with

the notion that translation-dependent ER association for group

II gene transcripts are more established after initiation of transla-

tion or the monosome stage.

We next examined how APA isoforms differed in ER associa-

tion in myoblasts versus myotubes. To this end, we analyzed

DMLS between long and short 30 UTR isoforms across genes

(group I only) with different aUTR sizes (Figure 6B). Interestingly,

althoughDMLS increased along with aUTR size changes inmyo-

blasts and myotubes (Figure 6B), this trend was more pro-

nounced in myoblasts than in myotubes (Figure 6B). Focusing

on genes with a long aUTR (top 20%, bin 5), we found that

DMLSs between long and short 30 UTR isoforms were signifi-

cantly greater in myoblasts than in myotubes in P (p = 2.0 3

10�5, Wilcoxon test; Figure 6C) and M (p = 8.83 10�6, Wilcoxon

test; Figure 6C) samples. Therefore, 30 UTR-mediated TiERA is

more potent in proliferating myoblasts than in differentiated my-
10 Cell Reports 36, 109407, July 20, 2021
otubes. Interestingly, using our previously generated 30READS
data based on total RNAs from C2C12 myoblasts and myotubes

(Wang et al., 2019), we found that group II genes were generally

upregulated during C2C12 differentiation (p = 5.3 3 10�12; Fig-

ure 6D), whereas group I genes were downregulated slightly dur-

ing differentiation (p = 1.0 3 10�4; Figure 6D). Therefore, the

decreased TiERA of group I transcripts in differentiated cells

could be attributable to increased translation-dependent ER as-

sociation of group II gene transcripts.

Because 30 UTRs generally lengthen during C2C12 cell differ-

entiation (Ji et al., 2009; Li et al., 2015; Figure S5B), we wanted to

find out how the 30 UTR size changewould affect ER association.

Using 30READS data for proliferating and differentiated C2C12

cells (Wang et al., 2019), we calculated RE difference (RED)

scores (long isoform versus short isoform in myotubes versus

myoblasts; see formula in Figure 6E) to quantitatively measure

APA changes. We found that genes whose long 30 UTR isoform

had a higher TiERA potential than its short 30 UTR isoform (based

on Puro+ samples; Figure 3E) showed much higher RED scores,

indicating greater 30 UTR lengthening in cell differentiation than

genes whose isoforms did not differ significantly in TiERA poten-

tials (median RED = 0.33 versus 0.18, p = 1.3 3 10�3, K-S (Kol-

mogorov–Smirnov) test; Figure 6E). Notably, genes whose short

isoform had a greater TiERA potential than the long isoform dis-

played lower RED scores than other two gene groups (median

RED = 0.05) even though the difference was not statistically
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significant (p = 0.12 versus geneswhose isoforms did not differ in

TiERA, K-S test; Figure 6E). These results indicate that gene tran-

scripts could increase ER association through 30 UTR length-

ening during cell differentiation.

DISCUSSION

In this study, we examine TiERA for mRNAs in mouse myoblast

and myotube cell line models. We show that TiERA is wide-

spread and that transcripts with high or low TiERA potentials

are enriched for distinct biological functions. The TiERA potential

is an intrinsic property of mRNA, governed by its size, sequence

content, andRNA structures. Consistently, 30 UTRAPA isoforms,

especially those with substantial differences in these features,

differ in TiERA potentials. Therefore, APA in cell differentiation al-

ters ER association of transcripts through 30 UTR size changes,

potentially affecting the localization and functions of their en-

coded proteins.

The ER is a large and complex subcellular network, having

close contact with the nucleus (English and Voeltz, 2013) and

other organelles. For group I transcripts, whose protein products

are generally not secreted ormembrane bound, a high TiERA po-

tential would restrict free movement of the transcript in the cell,

leading to localized regulation of mRNA translation and degrada-

tion. Our finding that transcripts with high TiERA potentials tend

to have functions in signaling pathways may indicate that TiERA

could be a mechanism by which proteins involved in signaling

pathways are produced locally at certain sites and poised for

signaling events. Conversely, transcripts with low TiERA poten-

tials, enriched for functions of metabolic processes and localiza-

tion to mitochondria and other subcellular compartments, may

be able to move freely in the cell by avoiding ER association.

A case in point is the Nmt1 gene, whose protein product plays

important roles in cellular signaling, protein-protein interaction,

and membrane targeting (Meinnel et al., 2020; Udenwobele

et al., 2017). Its two 30 UTR isoforms differ substantially in 30

UTR size. In addition, the relative size of 30 UTR to thewhole tran-

script is strikingly different for the two isoforms, accounting for

18% of the short isoform but 68% of the long isoform. Therefore,

even though CDS size in general is also important for TiERA, the

30 UTR of Nmt1 appears to play a dominant role in the long iso-

form. The high TiERA potential of the Nmt1 long 30 UTR isoform

could facilitate translation of encoded proteins to be in proximity

to its action site. Regulation of the relative abundance of the two

30 UTR isoforms of Nmt1 could have a widespread effect on pro-

tein myristoylation and, thus, their localization and interactions

with other proteins. In this vein, it is noteworthy that spatial dis-

tribution of myristoylated proteins changes drastically in myo-

genesis (Witten et al., 2017). The biological ramifications of

APA ofNmt1 in cell differentiation and other biological conditions

needs to be explored further.

Our analysis also revealed that transcripts of group II genes,

which encode secreted or membrane-bound proteins, can

have substantial differences in TiERA as well. They are associ-

ated with the ER through the SRP-mediated, translation-depen-

dent mechanism, which is more potent for ER association than

TiERA, as shown in our analysis. Having high or low TiERA poten-

tials for these transcripts may help them localize when they are
not in translation. Interestingly, proteins encoded by group II

gene transcripts with high TiERA potentials also tend to have

roles in cell signaling. The interplay between TiERA and transla-

tion-dependent ER association for these transcripts would be an

interesting subject for further analysis.

The bias in transcript distribution between membrane and

cytosol has been reported previously using similar cell fraction-

ation methods (Benoit Bouvrette et al., 2018; Jagannathan et al.,

2011). However, additional analysis with polysome profiling al-

lowed us to attribute membrane enrichment to the ER more defi-

nitely. On the other hand, we cannot rule out the possibility that

some membrane association is through other organelles, such

as endosomes or mitochondria (Cioni et al., 2019a; Higuchi

et al., 2014; Tsuboi et al., 2020; Williams et al., 2014). Future

studies using more sophisticated cell fractionation methods (Wil-

liamson et al., 2015) or microscopy techniques (Wu and Palazzo,

2020) could providemore precise data. Also notable is that 30 UTR
size in the insoluble fraction appears to be similar to that in the

membrane fraction. The insoluble fraction contains a mixture of

nuclear and cytoplasmic structures, such as chromatin and the

cytoskeleton (Wang et al., 2012). It is therefore possible that

long 30 UTRs may have intrinsic properties to associate with

various organelles and subcellular structures, facilitating localized

protein production and mRNA decay. How different organelles

and subcellular structures implement specificity for transcript as-

sociation is an interesting question, especially with respect to how

RNA-binding proteins are involved in transcript localization (Bé-

thune et al., 2019; Cui et al., 2012; Ma and Mayr, 2018).

Our analyses also suggest that TiERA is in competition with

SRP-mediated mechanisms for ER association. First, group I

gene transcripts increased ER association when translation

was inhibited. Second, 30 UTR-mediated TiERA decreased dur-

ing differentiation of C2C12 cells, which coincided with upregu-

lation of group II genes. While this notion awaits more direct

experimental validation, our current data appear to argue that

the ER space for transcript association is generally limited. In

this vein, we recently found that professional secretory cells,

which have a high protein production activity on the ER, tend

to express shorter 30 UTRs in general compared with their pre-

cursor cells (Cheng et al., 2020). One possibility is that expres-

sion of shorter 30 UTRs could avoid ER association, mitigating

transcript crowding on the ER and, thus, avoiding ER stress

and related mRNA degradation (Hollien et al., 2009; Reid et al.,

2014). Conversely, some cells, such as neurons, tend to express

long 30 UTRs (Guvenek and Tian, 2018; Miura et al., 2013; Zhang

et al., 2005). How the TiERA mechanism is employed in these

cells for localized translation and degradation (Cioni et al.,

2019b; Hyde et al., 2002) requires further investigation.
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Antibodies

Mouse anti-GRP94 Santa Cruz Biotechnology sc-393402; RRID:AB_2892568

Mouse anti-a-Tubulin Lab made N/A

Mouse anti-Histone H2A.X Santa Cruz Biotechnology sc-54606; RRID:AB_2114998

Rabbit anti-Histone H2A Cell Signaling Technology CST12349; RRID:AB_2687875

Rabbit anti-Calnexin Santa Cruz Biotechnology sc-6465-R; RRID:AB_1119918

Mouse anti-a-Tubulin SIGMA T5168; RRID:AB_477579

Chemicals, peptides, and recombinant proteins

Phosphate buffered saline (PBS) Lab made N/A

Dulbecco’s Modified Eagle Medium (DMEM) Lab made N/A

Bovine Calf Serum (CS) Sigma-Aldrich 12133C-500ML

Horse serum Sigma-Aldrich H1138-500ML

Penicillin/Streptomycin GIBCO 15140-122

Corning 0.05% Trypsin/0.53mM EDTA in HBSS

w/o Calcium, Magnesium or Sodium Bicarbonate

Thermo Fisher Scientific 25052CI

Puromycin Sigma Aldrich P8833-10MG

Puromycin GIBCO 2078745

Harringtonine Abcam ab141941

Cyclohexamine Sigma-Aldrich 01810-1G

TRIzol� Reagent Thermo Fisher Scientific 15596018

SIGMAFAST protease inhibitor cocktail Sigma-Aldrich S8820

Oligo d(T)25 Magnetic Beads NEB S1419S

Adenosine 50-Triphosphate (ATP) NEB P0756S

SUPERased In RNase Inhibitor (20 U/mL) Thermo Fisher Scientific AM2694

NEBNext� RNase III RNA Fragmentation Module NEB E6146

T4 RNA Ligase 1 NEB M0204S

T4 RNA Ligase 2, truncated KQ NEB M0373S

TURBO DNA-free Kit Thermo Fisher Scientific AM1907

M-MLV Reverse transcriptase Promega M1705

Phusion� High-Fidelity DNA Polymerase NEB M0530S

Q5� High-Fidelity DNA Polymerase NEB M0491S

Dynabeads MyOne Streptavidin C1 Thermo Fisher Scientific 65001

RNase H Epicenter R52250

T4 Polynucleotide Kinase NEB M0201S

Shrimp Alkaline Phosphatase (rSAP) NEB M0371S

dNTP (25 mM each) R 99% HPLC GenScript C01581

AMPure XP beads Beckman Coulter A63881

PVDF membrane Thermo Fisher Scientific 88518

Clarity Western ECL Substrate Bio-Rad 1705060

Nytran N Nylon Blotting Membrane, 0.45 mm, 30 cm 3 3 m, roll GE Healthcare Life Sciences 10416196

BamHI NEB R0136S

Nylon Membranes, positively charged Roche 11417240001

Lipofectamine LTX Reagent with PLUS Reagent Invitrogen 1122890

Oligonucleotides

50 adaptor: 50-CCUUGGCACCCGAGAAUUCCANNNN Sigma-Aldrich N/A

DNA/LNA oligo: biotin-T15-(+TT)5, where ‘‘+T’’ denotes LNA Exiqon N/A

(Continued on next page)
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50 adenylated 30 blocked 30 adaptor with degenerated nucleotides:

50-rApp/NNNNGATCGTCGGACTGTAGAACTCTGAAC/3ddC

Bioo Scientific N/A

Reverse transcription primer: 50-GTTCAGAGTTCTACAGTCC

GACGATC

Sigma-Aldrich N/A

Reverse PCR primer (GX3): 50-AATGATACGGCGACCACCGAGA

TCTACACGTTCAGAGTTCTACAGTCCGA

Sigma-Aldrich N/A

Indexed forward PCR primers (index region in bracket): 50-CAAG
CAGAAGA CGGCATACGAGAT[NNNNNN]GTGACTGGAGTT CC

TTGGCACCCGAGAATTCCA

Sigma-Aldrich N/A

Critical commercial assays

Agilent RNA 6000 Pico Kit Agilent Technologies 5067-1513

High Sensitivity DNA analysis kit Agilent Technologies 5067-4626

High Sensitivity D1000 ScreenTape Assay kit Agilent Technologies 5067-5584, 5067-5585, 5067-5587

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Q32854

NEBNext� Magnesium RNA Fragmentation Module NEB E6150S

DC Protein Assay Reagents Package Bio-Rad 5000116

DIG Northern Starter Kit Roche 12039672910

Deposited data

C2C12 myoblast and myotube cell RNA-seq or 30READS+ (total,

fractionated, puromycin-treated, polysome profiling)

Raw data from this study GEO: GSE162971

C2C12 myoblast & myotube, total cellular RNA (30READS+) Wang et al., 2019 GEO: GSE115232

Experimental models: cell lines

Mouse: C2C12 cells ATCC CRL-1658

Recombinant DNA

Plasmid: psiCHECK2 Promega C8021

Plasmid: pcDNA3.0 Invitrogen N/A

Plasmid: psiCHECK2-Nmt1(full 30UTR) This study N/A

Plasmid: pcDNA3-Nmt1(E1-4) This study N/A

Plasmid: pcDNA3-hRluc This study N/A

Software and algorithms

Cutadapt Martin, 2011 https://cutadapt.readthedocs.io/en/

stable/guide.html

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

DESeq & DEXSeq Anders and Huber, 2010;

Anders et al., 2012

https://bioconductor.org/packages/

release/bioc/html/DESeq2.html;

https://bioconductor.org/packages/

release/bioc/html/DEXSeq.html

STAR (v2.5.2) Dobin et al., 2013 https://github.com/alexdobin/STAR

GOstats Falcon and Gentleman, 2007 https://www.bioconductor.org/packages/

release/bioc/html/GOstats.html

Scikit-learn Pedregosa et al., 2011 https://scikit-learn.org/stable/index.html

XGBoost Chen and Guestrin, 2016 https://xgboost.readthedocs.io/en/latest/

ViennaRNA Lorenz et al., 2011 https://www.tbi.univie.ac.at/RNA/

ViennaRNA/doc/html/

index.html

FIJI Schindelin et al., 2012 https://imagej.net/software/fiji

30READS analysis code Li et al., 2015; Zheng

et al., 2016

https://github.com/DinghaiZ/

3-prime-READS-plus
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Bin Tian

(btian@wistar.org).

Materials availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

Data and code availability
Sequencing datasets generated in this study have been deposited into the GEO database with the accession number GSE162971.

This paper does not report original code. Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

C2C12 myblast cells were cultured in DMEM with 10% fetal bovine serum. C2C12 cell differentiation to myotube cells was induced

by culturing cells in DMEM with 2% horse serum when cell confluency reached > 95%. Culture media were supplemented with

100 I.U./mL penicillin and 100 mg/mL streptomycin.

METHOD DETAILS

Cell fractionation
We followed the fractionation by sequential detergent extraction protocol developed by Jagannathan et al. (2011) with minor mod-

ifications. Briefly, C2C12 cells (with or without 100 mg/ml Puromycin treatment) on 10-cmdisheswere rinsedwith pre-chilled PBS and

incubated in pre-chilled PBS with 1 mg/MgCl2 on ice at 4�C for 20 min to disrupt microtubules. After removing the PBS/MgCl2 buffer

completely, 0.75 mL permeabilization buffer (110 mM KCl, 25 mM K-HEPES pH 7.4, 2.5 mM MgCl2, 0.1 mM EGTA, 0.015% (w/v)

digitonin (sigma), 1 mM DTT, 1 x FAST Protease Inhibitor Cocktail (sigma), and 40U/mL SuperaseIn RNase Inhibitor (Thermo Fisher

Scientific) was added to each dish to evenly cover all the cells. After 10 min incubation on ice, the dishes were tilted on ice to allow

collection of the cytosolic fraction. The dishes were then gently washed with 8 mL pre-chilled wash buffer (110 mM KCl, 25 mM

K-HEPES pH 7.4, 2.5 mM MgCl2, 0.1 mM EGTA, 0.004% (w/v) digitonin (sigma), 1 mM DTT, 1 x FAST Protease Inhibitor Cocktail

(sigma), and 40U/mL SuperaseIn RNase Inhibitor (Thermo Fisher Scientific)). After removing all the wash buffer, 0.75 mL lysis buffer

(200 mM KCl, 25 mM K-HEPES pH 7.4, 10 mM MgCl2, 1% (v/v) NP40, 0.5% (w/v) sodium deoxycholate, 1 mM DTT, 1 x FAST Pro-

tease Inhibitor Cocktail (sigma), and 40U/mLSuperaseIn RNase Inhibitor (Thermo Fisher Scientific)) was added to each dish to evenly

cover all the cells. After 10min incubation on ice, the dishes were tilted on ice to allow collection of themembrane fraction. The dishes

were then gently washed with 8 mL pre-chilled PBS buffer. After removing all the PBS, the insoluble fraction on the dish was saved at

�80�C for RNA or protein extraction. The cytosolic and membrane fractions were centrifuged at 700 x g and subsequently 1400 x g

for 5 min in a micro-centrifuge to remove any debris. RNA from the lysate was extracted using 10x volume TRIZol reagent (Thermo

Fisher Scientific).

Polysome profiling
We followed the polysome profiling protocol described in Esposito et al. (2010) with some minor modifications. Specifically, about

20% of the supernatant was saved for cytoplasmic RNA extraction. The rest of the supernatant was transferred to a new tube

and was centrifuged at 14,000 x g for 5 min to remove mitochondria. The resulting supernatant was layered onto a 10 mL 10%–

50% linear sucrose gradient in a polyallomer tube (Beckman Coulter), containing 20 mM HEPES-KOH pH 7.5, 15 mM MgCl2,

80 mM KCl, 2mM DTT, and 100 mg/ml cycloheximide, followed by centrifugation in an SW-41 Ti rotor at 39,000 rpm at 4�C for

2 hr. The gradient was then fractionated using a system comprising a syringe pump (Harvard Apparatus model 11), a density gradient

fractionator (Brandel), and an ISCO UA-6 UV/VIS detector. The lysate was partitioned into three fractions based on UV absorbance,

i.e., ribosome-free, monosome, and polysome fractions. Monosome and polysome fractions were incubated at 65�C for 5 min with

25 mM EDTA (pH 8.0), 10 mM Tris-HCl (pH7.0), and 1% SDS, followed by extraction of RNA with phenol-chloroform and Ethanol

precipitation.

30READS
The 30READS protocol (30READS+ version) was used in this study as previously described (Zheng et al., 2016). Briefly, poly(A)+ RNA

was captured with oligo d(T)25 magnetic beads (NEB) and fragmented on-beads by RNase III. After washing away free RNA frag-

ments, the poly(A)-containing RNA fragments were eluted from the beads and precipitated with ethanol and ligated to heat-dena-

tured 50adaptor (50-CCUUGGCACCCGAGAAUUCCANNNN) with T4 RNA ligase 1 (NEB). The ligated products were then captured
Cell Reports 36, 109407, July 20, 2021 e3
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biotin-T15-(+TT)5 (Exiqon), where +T is locked nucleic acid, bound toDynabeadsMyOne Streptavidin C1 (Thermo Fisher). BoundRNA

was digested with RNase H, which also eluted RNA from the beads. Eluted RNA fragments were precipitated with ethanol after

washing with RNase H buffer. Purified RNA fragments were then ligated to a 50-adenylated 30 adaptor (50-rApp/NNNNGATCGTCG

GACTGTAGAACTCTGAAC/3ddC) with T4 RNA Ligase 2 (truncated KQ, NEB). The ligation products were reverse-transcribed

M-MLV reverse transcriptase (Promega), followed by PCR amplification using Phusion high-fidelity DNA polymerase (NEB) and

bar-coded PCR primers for 15–18 cycles. PCR products were size-selected twice with AMPure XP beads (Beckman Coulter). The

size and quantity of the libraries were examined on an Agilent Bioanalyzer. The cDNA libraries were purified and sequenced on an

Illumina HiSeq (1x150 nt).

Plasmid construction
For psiCHECK2-Nmt1 full 30 UTR, used as a reporter plasmid, a PCR product containing Nmt1 full 30 UTR was amplified from C2C12

cDNA andwas inserted into psiCHECK2 plasmid using XhoI andNotI. For pcDNA3-Nmt1 E1-4 and pcDNA3-hRluc that were used for

generating Nmt1 and hRluc RNA probes, respectively, PCR products containing the Nmt1 E1-4 (423 bp) and hRluc (698 bp) se-

quences were amplified from C2C12 cDNA and psiCHECK2 plasmid, respectively, and were inserted into pcDNA3 using BamH I

(NEB) based on the Gibson Assembly method. All primers used in this study are listed in Table S7.

Cell transfection
C2C12 cells in a six-well plate (60%–70% confluence) were transfected with 1.5 mg reporter plasmids with Lipofectamine LTX

(Invitrogen) according to the manufacturer’s protocol. Cell media were replaced after 6 hr of transfection.

Northern blot analysis
Northern blotting was carried out using the Digoxigenin (DIG) Northern Starter Kit (Roche) according to the manufacturer’s protocol.

Briefly, 20 mg of total RNA from non-transfected C2C12 cells or 1.5 mg from transfected C2C12 cells were resolved on a denaturing

agrose gel, and were transferred onto a nylon membrane (Roche), which were then subjected to UV-crosslinking. RNA on the mem-

brane was hybridized with DIG-labeled RNA probes, which were produced from in vitro transcription using PCR products as tem-

plate. Primers used for the probes were listed in Table S7. DIG-labeled probes were detected by anti-DIG antibody conjugated

with alkaline phosphatase. Chemiluminescence from ECL reaction kit was detected on X-ray film. Quantification was carried out

in ImageJ.

30READS data analysis
30READS data were processed as previously described (Zheng et al., 2016). Briefly, the sequence corresponding to 50 adaptor was

first removed from raw reads by using Cutadapt (Martin, 2011). Reads with short inserts (< 23 nucleotides) were discarded. The re-

maining reads were then mapped to the genome (mm9) by using bowtie2 (local mode) (Langmead and Salzberg, 2012). The 50

random nucleotides derived from the 30 adaptor were removed before mapping. Reads with a mapping quality score (MAPQ) R

10 were kept for further analysis. Reads with R 2 non-genomic 50-Ts after alignment were called PAS reads. PASs within 24 nucle-

otides from each other were clustered as previously described (Hoque et al., 2013). The PAS read counts mapped to genes were

normalized by themedian ratiomethod in the DESeq program (Anders andHuber, 2010). For 30UTRAPA analysis, the twomost abun-

dant APA isoforms (based on PAS reads) were selected. We required that both PASs should be in the last exon of gene. They were

named proximal PAS (pPAS) and distal PAS (dPAS) isoforms. Significant APA events were those with DMLS or Relative Expression

Difference (RED) > log2(1.2) or < -log2(1.2) and P-value < 0.05 (Fisher’s exact test or DEXSeq analysis) between samples. RED was

calculated as the difference in log2(RPM ratio) of the two APA isoforms between two sample sets. The aUTR size was the distance

between the two 30UTR APA sites.

Analysis of APA using RNA-seq data
30UTR APA analysis using RNA-seq data was carried out by using the APAlyzer program (Wang and Tian, 2020). Relative expression

(RE) was calculated as log2(aUTR read number / cUTR read number) in a sample.

Gene ontology analysis
Gene ontology (GO) analysis was carried out by using the GOstats Bioconductor package (Falcon and Gentleman, 2007). Generic

terms (associated with more than 1,000 genes) were discarded. To reduce redundancy in reporting, any GO termwith a gene overlap

greater than 75% with a more significant term was discarded. p values are based on the hypergeometric test.

Protein subcellular localization analaysis
We used MetaSecKB database (Meinken et al., 2015) to annotate protein localization. Mitochondrial proteins were defined by Meta-

SecKB. Secreted proteins were those annotated as secreted or highly likely secreted. Membrane proteins were those annotated as

ER, Golgi, lysosome, peroxisome, or plasmamembrane proteins. Proteins annotated with other locations or unannotated ones were

combined and called ‘other’.
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Classification of transcripts based on MLS
A Gaussian mixture modeling method, based on the sklearn.mixture package of the Scikit-learn software (Pedregosa et al., 2011),

was used to classify transcripts based on MLS values (2 replicates) in Puro+ and Puro- samples. p < 0.05 was used to assign tran-

scripts to groups. In APA analysis, a gene was assigned to a group if all of its isoforms are in the same group.

TiERA predictive model
We used the XGBoost method (Chen and Guestrin, 2016) to construct a statistical model for TiERA prediction. Input data for the

model were MLS values (2 replicates) in Puro+ samples. Only well expressed group I transcripts (RPM > 5) were used for training.

Transcripts were weighted based on number of detected reads for each transcript. Hyperparameters were fine-tuned with Random-

izedSearchCV from sklearn.model_selection package of the Scikit-learn software (Pedregosa et al., 2011) with a 5-fold cross-vali-

dation splitting strategy. Input features to train the model were based on size, dimer frequency, and predicted RNA structure. Fea-

tures were derived from RefSeq sequences.

RNA structure analysis
CDS and 30UTR sequences were divided into sub-sequences based on a 100-nt moving window with a 50-nt overlap between adja-

cent windows. RNAfold (Lorenz et al., 2011) was used to calculate theminimum free energy (MFE, kcal/mol) for each window, and the

MFE values of all windowswere then averaged to represent the whole sequence. In vivomouse embryonic stem cell icSHAPE (in vivo

click selective 2-hydroxyl acylation and profiling experiment) reactivity scores (Sun et al., 2019) were extracted for CDSs or 30UTRs. A
20-nt sliding window over a transcript region was used to generate Gini indices across the region. The median of Gini indices of all

windows was used to represent the whole region.

QUANTIFICATION AND STATISTICAL ANALYSIS

Student’s t test was used to determine statistical significance between groups, unless specified otherwise. Significant level of APA

changes was assessed by using DEXseq (when there were replicates) or Fisher’s exact test (when there were no replicates). Signif-

icance of gene expression difference was assessed by using DEseq (when there were replicates) or the Fisher’s exact test (when

there were no replicates). K-S (Kolmogorov–Smirnov) test was used to compare data distributions in different gene sets. The Wil-

coxon test was used to compare aUTR size-based gene bins.
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