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Key Points

• EL cells show activated
glycolysis and high
expression of LSD1
among the AML sub-
types, which represent
unique metabolic
phenotypes.

• LSD1 promotes glycol-
ysis and heme synthe-
sis by stabilizing
GATA1 and maintains
GATA1-target meta-
bolic genes by down-
regulating C/EBPa.

Acute myeloid leukemia (AML) is a heterogenous malignancy characterized by distinct

lineage subtypes and various genetic/epigenetic alterations. As with other neoplasms, AML

cells have well-known aerobic glycolysis, but metabolic variations depending on cellular

lineages also exist. Lysine-specific demethylase-1 (LSD1) has been reported to be crucial

for human leukemogenesis, which is currently one of the emerging therapeutic targets.

However, metabolic roles of LSD1 and lineage-dependent factors remain to be elucidated in

AML cells. Here, we show that LSD1 directs a hematopoietic lineage-specific metabolic

program in AML subtypes. Erythroid leukemia (EL) cells particularly showed activated

glycolysis and high expression of LSD1 in both AML cell lines and clinical samples.

Transcriptome, chromatin immunoprecipitation–sequencing, and metabolomic analyses

revealed that LSD1was essential not only for glycolysis but also for heme synthesis, themost

characteristic metabolic pathway of erythroid origin. Notably, LSD1 stabilized the erythroid

transcription factor GATA1, which directly enhanced the expression of glycolysis and heme

synthesis genes. In contrast, LSD1 epigenetically downregulated the granulo-monocytic

transcription factor C/EBPa. Thus, the use of LSD1 knockdown or chemical inhibitor

dominated C/EBPa instead of GATA1 in EL cells, resulting in metabolic shifts and growth

arrest. Furthermore, GATA1 suppressed the gene encoding C/EBPa that then acted as

a repressor of GATA1 target genes. Collectively, we conclude that LSD1 shapes metabolic

phenotypes in EL cells by balancing these lineage-specific transcription factors and that

LSD1 inhibitors pharmacologically cause lineage-dependent metabolic remodeling.

Introduction

Although aerobic glycolysis has been thought of as a common hallmark of cancer,1 emerging evidence
suggests the existence of metabolic heterogeneity within and between tumor types, and this could be
a potential barrier in targeting metabolic vulnerability in cancer therapies.2-7 Acute myeloid leukemia
(AML) is a group of hematopoietic malignancies comprising many subtypes with different lineage
identities and genetic/epigenetic lesions.8,9 Although the characteristic differences among subtypes
have been described, variable metabolic phenotypes and their regulatory mechanisms remain
unexplored. A previous report, using an MLL-AF9 AML model in mice, showed that leukemic cells are
more vulnerable to perturbations of glycolytic genes than normal hematopoietic cells.10 Another
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report has shown a similar glycolysis dependency in AML cells
harboring internal tandem repeats of the FLT3 gene.11 In addition,
mutations in the isocitrate dehydrogenase gene generate a rare
metabolite that causes epigenetic disruption in AML.12 Because
these observations are limited to subtypes with specific geno-
types, it remains unclear whether lineage differences are linked to
metabolic properties in AML. In addition, the availability of nutrients
such as glucose and glutamine exerts a profound influence on the cell
fate decision during normal hematopoiesis.13 These observations
raise the possibility that metabolic phenotypes and/or nutrient
requirements vary among AML subtypes depending on lineage
identities. Despite remarkable clinical advances, there is considerable
variability in the success of therapy among AML subtypes.8,14 Thus,
targeting of subtype-specific metabolic features could provide a
powerful tool for next-generation AML therapy.

Lysine-specific demethylase-1 (LSD1) was first identified as a histone
H3 lysine 4 (H3K4) demethylase and later as a demethylase for
transcription factors (TFs) such as p53 and STAT3.15,16 LSD1 has
been implicated in diverse biological processes, including cellular
differentiation, tumor development, and metabolism.17,18 We pre-
viously reported that, in hepatocellular carcinoma cells, LSD1
represses mitochondrial respiration-associated genes such as
PPARGC1A through H3K4 demethylation, while promoting the
expression of glycolytic genes by facilitating hypoxia-inducible factor-
1a (HIF-1a)–mediated transcription.19 In addition, high expression
of LSD1 is associated with enhanced glucose uptake in human
esophageal cancer.20 In hematopoietic cells, LSD1 physically
interacts and cooperates with growth factor independence-1 and
growth factor independence-1b, TFs that are involved in multiple
steps of hematopoiesis.21 The depletion of LSD1 in the hematopoi-
etic system results in defects in stem and progenitor cells, thereby
impeding the differentiation of multiple lineages.22 Increased
expression of LSD1 has been observed in many different types of
human hematopoietic neoplasms, implying significant involvement
in leukemogenesis.23 Indeed, small compound inhibitors of LSD1
have been shown to eradicate leukemic cells effectively.24-27

In this study, we investigated the role of LSD1 in metabolic
regulation in human AML subtypes and found that erythroid
leukemia (EL) cells have activated glycolysis and high expression
of LSD1. Using transcriptomic and epigenomic approaches, we
identified that LSD1 facilitates the function of the erythroid-specific
factor GATA1, while suppressing the granulo-monocytic factor
C/EBPa. In addition, we found that GATA1 and C/EBPa work in
a mutually exclusive manner in EL cells, emphasizing a functional
balance of these lineage-dependent TFs by LSD1. We therefore
concluded that LSD1 plays essential roles in the metabolic
heterogeneity of AML and especially in metabolic phenotypes of
EL cells.

Methods

Cell culture

AML cell lines (HEL, TF1a, SET-2, NB4, and HL60) and K562 cells
were grown in RPMI 1640 medium (Sigma), supplemented with
10% heat-inactivated fetal bovine serum, 50 U/mL penicillin, and
50 mg/mL streptomycin at 37°C with 95% air and 5% carbon
dioxide. Detailed information on cell lines is provided in supple-
mental Table 1. Hemoglobin synthesis in HEL cells was induced by

the addition of 30 mM hemin for 4 days and visualized by benzidine
staining as described previously.28

Lentiviral expression of short hairpin RNA

Lentiviral vectors for tetracycline-inducible short hairpin RNA
expression were obtained from the RIKEN BioResource Research
Center (http://cfm.brc.riken.jp/Lentiviral_Vectors_J). The short hair-
pin RNA target sequences were as follows: shLSD1_#1, 59-CAC
AAGGAAAGCTAGAAGA-39; shLSD1_#2, 59-AACAATTAGAAG
CACCTTA-39; shGATA1, 59-GGATGGTATTCAGACTCGA-39;
shCEBPA, 59-ACGAGACGTCCATCGACAT-39; shALAS2_#1,
59-GATGTGAAGGCTTTCAAGA-39; shALAS2_#2, 59-AGGCTT
CATCTTTACCACT-39; shGATA2, 59-GAAGTGTCTCCTGAC
CCTA-39; and shGFI1 59-GCTCGGAGTTTGAGGACTTCT-39.

Measurement of cellular glucose uptake

To measure glucose uptake, cells were incubated in the culture
medium containing 100 mM 2-NBDG (Peptide Institute) for 2 hours,
as previously described.29

Real-time measurement of glycolytic activity

Monitoring of cellular glycolytic activity was performed by using
the XFe24 Extracellular Flux analyzer (Seahorse Bioscience). For
floating cells, we used Cellbed (Japan Vilene), a high-purity silica
fiber that can be used as a three-dimensional cell culture scaffold
sheet on each well of the assay plate (300 000 cells per well). To
evaluate glycolysis capacity, cells were cultured in glucose-free
medium for 1 hour before the assay. Real-time measurement was
initiated under glucose-free conditions, followed by the addition of
25 mM glucose and then a glycolysis inhibitor 2-deoxy-glucose at
100 mM. Glycolytic flux was determined by measuring the
extracellular acidification rate.

Metabolomic analyses

Metabolomic analyses were conducted by using capillary electro-
phoresis time of flight mass spectrometry at Human Metabolome
Technologies. Cluster analyses were performed as previously
described.30 The amount of metabolite was normalized for
hierarchical clustering by the average linking method using Cluster
3.0. The heatmap was visualized by Java Tree view. In supplemental
Figure 4L, 57 metabolites were detected in our experiment and
registered in the Cancer Cell Encyclopedia (CCLE) database.7

Poly (A) RNA-sequencing analysis

Total RNA from HEL cells was extracted by using the RNeasy Mini
Kit (Qiagen). Messenger RNA (mRNA) was purified by using an
NEBNext Poly (A) mRNA Magnetic Isolation Module (NEB). A
complementary DNA library was synthesized by using a NEBNext
Ultra DNA Library Prep Kit for Illumina (NEB) and was sequenced
on a NextSeq 500 sequencer (Illumina) with 75 bp single-end
reads. The resulting reads were aligned to the UCSC hg19
reference genome by using TopHat (version 1.4.1).31 Normalization,
differential analysis, gene ontology analysis, and construction of the
Venn diagram were performed by using Strand NGS (Strand
Genomics). The primers used for quantitative reverse transcription
polymerase chain reaction (RT-qPCR) to confirm gene expression
are listed in supplemental Table 2.
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Chromatin immunoprecipitation

About 8 3 106 and 4 3 106 HEL cells were used to detect
methylated histone H3K4 and LSD1 enrichment, and GATA1
enrichment, respectively. Crosslinking, fragmentation, and chroma-
tin immunoprecipitation (ChIP) experiments were performed with
some modifications (supplemental Methods) based on previous
reports.32,33 The primers used are listed in supplemental Table 2.

ChIP-sequencing analysis

Using 8 3 106 HEL cells, ChIP experiments were performed as
noted earlier, and each protein-bound chromatin fraction was
collected for DNA purification. Library preparation was done by
using the NEBNext Ultra II DNA Library Kit for Illumina (New
England Biolabs). Adapter-ligated DNA fragments were purified by
using Agencourt AMPure XP. High-throughput sequencing was
performed by using a NextSeq 500 Sequencer with 75 bp single-
end reads. The qualified reads were aligned onto the human
reference genome hg19 by using the Burrows-Wheeler Alignment
algorithm.34 Duplicate reads and the reads with low overall quality
or low mapping quality were excluded. The final numbers of mapped
reads are listed in supplemental Table 3. Peak detection was done
by using the MACS2 algorithm. For LSD1/ChIP-sequencing,
sequencing data from duplicate samples were separately mapped
to the genome, merged, and then subjected to peak calling with
MACS2 algorithm. Motif analyses and peak annotations were done
with HOMER.35 Peaks within intergenic regions were associated
with nearby genes if they were within a 100-kb window from the
transcriptional start site of a specific gene. The cooccupancy of
LSD1 with other proteins was analyzed by using ChIP-Atlas (http://
chip-atlas.org/). Visualization of ChIP-sequencing data was done
by using the Integrative Genomics Viewer (http://software.broad-
institute.org/software/igv/) after converting BAM files into bigWig
files. ChIP-sequencing for H3K9me3 in K562 cells was obtained
from the ENCODE/Broad Institute via the UCSC Genome Browser
Web site (http://genome.ucsc.edu/index.html).

Clinical data sets

Transcriptome data set from clinical AML cases were obtained from
The Cancer Genome Atlas (TCGA) database (https://www.cancer.
gov/about-nci/organization/ccg/research/structural-genomics/
tcga). Transcriptome data from EL (AML-M6) cases were obtained
from the St. Jude PeCan Data Portal88 (https://pecan.stjude.cloud/
proteinpaint/study/ael).36 These data sets use different algorithms
for the normalization of expression levels (TCGA, transcripts per
million; St. Jude PeCan Data Portal88, counts per million).
Therefore, to analyze these data sets collectively, we normalized
the expression level of each gene to an internal control. A gene
encoding TATA-binding protein (TBP) was selected for this
purpose because it showed relatively low sample-to-sample
variation compared with other candidates such as RPLP0
and ACTB.

Statistical analysis and reproducibility

Data are presented as the mean 6 standard deviation. Equality of
variance was examined by using an F test. All statistical analyses
were performed by using a two-tailed Student’s t test. A value of
P , .05 was considered statistically significant. Representative
data/images were replicated in at least 3 independent experiments.

Results

High expression of LSD1 is directly linked to

enhanced glucose metabolism in EL

To examine whether LSD1 contributes to enhanced glycolysis in
leukemic cells, we analyzed the gene expression profiles of AML
cell lines and clinical samples using publicly available data sets from
the TCGA and the CCLE.37,38 Expression of LSD1 and GLUT1
(SLC2A1), a major regulator of glucose flux, was significantly and
positively correlated in both cell lines and clinical samples (Figure
1A-B; supplemental Figure 1A). In particular, these genes were
highly expressed in EL, which is classified as a unique subtype of
AML (FAB M6).39,40 An analysis of a published single-cell RNA-
sequencing data41 from normal hematopoietic cells revealed
enhanced expression of LSD1 in the erythroid lineage (e-ery and
l-ery) (supplemental Figure 1B). Notably, LSD1-high EL cells with
different genetic backgrounds exhibited higher levels of medium
acidification and GLUT1 expression than did other AML cells
(Figure 1C; supplemental Figure 1C-D; supplemental Table 1),
indicating that enhanced glycolysis is a characteristic of erythroid
lineage. To test the function of LSD1 in metabolic regulation, we
generated doxycycline-inducible LSD1-knockdown (KD) cells using
distinct EL cell lines, HEL and TF1a. LSD1-KD downregulated the
expression of GLUT1 as well as PKLR, an essential glycolytic
enzyme in erythroid cells (Figure 1D-E; supplemental Figure 1E-H).42

Consistent with the gene expression profiles, LSD1-KD cells showed
reduced glucose uptake and glycolytic capacity (Figure 1F-G;
supplemental Figure 1I-K).

Treatment with S2101, a selective inhibitor of LSD1, led to similar
gene expression and metabolic changes (Figure 1H-K; supplemen-
tal Figure 2A-D). These results were reproduced by the use of
alternative LSD1 inhibitors, T-3775440 and GSK-LSD1 (supple-
mental Figure 2E-J). Moreover, LSD1 inhibition selectively inhibited
the growth of EL and megakaryoblastic leukemia cells, which
exhibited high LSD1 expression (Figure 1B; supplemental 3). In
non-EL AML cells, GLUT1 expression was mostly unaffected by
LSD1 inhibition (supplemental Figure 2K). The data show that
increased LSD1 in the EL subtype is directly linked to enhanced
glycolytic activities.

LSD1 facilitates metabolic pathways associated with

erythroid lineage

To further identify LSD1-dependent metabolic pathways in EL cells,
we analyzed the gene expression changes in LSD1-inhibited HEL
cells by RNA-sequencing. We identified that 334 genes were
commonly downregulated by both LSD1-KD and S2101 treatment
(Figure 2A). Of note, genes involved in heme biosynthesis were
commonly downregulated by LSD1 inhibition. By qRT-PCR, we
confirmed that key genes in heme metabolism such as ALAS2 and
SLC25A37 (encoding 59-aminolevulinate synthase-2 and mitoferrin-
1, respectively) were significantly downregulated in LSD1-inhibited
HEL and TF1a cells (Figure 2C; supplemental Figure 4A-F). To test
the essentiality of heme synthesis in EL cells, we generated ALAS2-
KD HEL cells. ALAS2-KD resulted in reduced cell growth, when
combined with Fe21 depletion by deferoxamine, an iron chelator,
suggesting that the heme synthetic pathway is involved in survival
and/or growth (supplemental Figure 4G-I). Because heme synthesis
is intimately associated with erythrocyte function, we hypothesized
that LSD1 directs a lineage-linked metabolic phenotype. To test this
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theory, we analyzed metabolic properties in LSD1-inhibited cells after
treatment with hemin, a chemical that promotes erythroid character-
istics. Consistent with the gene expression changes, hemin-induced
hemoglobin production was downregulated by the loss of LSD1
(Figure 2D; supplemental Figure 4J). It is important to note that LSD1-
inhibited cells did not exhibit morphologic changes (supplemental
Figure 4K), suggesting that differentiation status was not altered.
Enhancement of erythroid-type metabolism by hemin was confirmed
by a metabolomic examination, in which hemin treatment led to
increases in the EL-enriched metabolites (supplemental Figure 4L),
based on the CCLE metabolome database.7 We found that such
hemin-induced increases of metabolites were mostly canceled by
treatment with S2101 (Figure 2E). Collectively, these data suggest
that LSD1 directs an erythroid-associated metabolic phenotype in
EL cells.

In our RNA-sequencing data, 409 genes were upregulated by
LSD1-KD and S2101 treatment (Figure 2B). Many of these genes
were associated with membrane-bound proteins. Among these
genes,CD48 andCD34, which are surface markers of lymphocytes
and hematopoietic stem cells, respectively, were prominently
upregulated by LSD1 inhibition (Figures 2F-G, 4A). These data
indicate that LSD1 suppresses non-erythroid features in EL cells.

LSD1 cooperates with GATA1 to promote metabolic

gene expression

To gain mechanistic insight into metabolic gene regulation by
LSD1, we examined the distribution of LSD1-bound sites in HEL
cells by ChIP-sequencing analysis. Among the 8280 LSD1 ChIP
peaks, 81% were located in introns and intergenic regions
(Figure 3A). Motif analysis of LSD1-bound sites identified
enrichment of consensus motifs for transcription factors such as the
GATA family and RUNX family proteins (Figure 3B). The co-
existence of LSD1- and GATA-bound sites was confirmed by
comparing our ChIP-sequencing data with publicly available data
sets using ChIP-Atlas (http://chip-atlas.org/) (supplemental
Figure 5A).43 The GATA family consists of GATA1-6, each having
a unique expression pattern and function. In particular, deregulation
of GATA1 function has been linked to impaired erythroid
differentiation, and thus to leukemogenesis.44 Interestingly, GATA1
was abundantly expressed in HEL cells (supplemental Figure 5B)
and physically interacted with LSD1 (Figure 3C; supplemental
Figure 5C), implying an active role of GATA1 in EL cells. To explore
the role of GATA1 in metabolic regulation, we knocked down
GATA1 in HEL and TF1a cells and found remarkably reduced

expression of GLUT1 as well as a known GATA1-regulated gene,
ALAS2 (Figure 3D-E; supplemental Figure 5D-E). Consistently,
GATA1-KD led to a downregulation of glucose uptake and
extracellular acidification rate (Figure 3F-G). By ChIP-qPCR
analyses, we found that GATA1 occupies putative enhancers of
GLUT1 and ALAS2 genes (Figure 3H; supplemental Figure 5G-H).
We also observed a growth reduction in GATA1-KD cells
(Figure 3I; supplemental Figure 5F), indicating an essential role of
GATA1 in cell maintenance. These data collectively suggest that
GATA1 promotes glycolysis by directly regulating GLUT1 expres-
sion in EL cells.

Notably, we found that the enrichment of GATA1 at GLUT1 and
ALAS2 enhancers was abolished by LSD1 depletion (Figure 3H;
supplemental Figure 5G-H). In addition, GATA1 protein decreased
under LSD1 inhibition, while GATA1 mRNA remained unaffected
(Figure 3J; supplemental Figure 4E-F; supplemental Figure 5I-M),
suggesting a posttranscriptional control of GATA1 by LSD1.
Indeed, when a proteasome inhibitor (MG132) was used in
combination with LSD1 inhibition, the reduction of GATA1 was
canceled (Figure 3K; supplemental Figure 5K-M). Taken together,
these data show that LSD1 protects GATA1 from proteasomal
degradation, which in turn enhances glycolysis and heme synthesis
in EL cells.

LSD1 and GATA1 repress the myeloid-specific

enhancer of CEBPA

Because LSD1 inhibition led to a derepression of non-erythroid
hematopoietic genes (Figure 2B,F,G), we next investigated whether
the suppression of nonerythroid features is important for metabolic
phenotypes. Among the genes upregulated by LSD1 inhibition, the
CEBPA gene, which encodes a key granulo-monocytic transcrip-
tion factor C/EBPa, showed a dramatic increase (Figure 4A;
supplemental Figure 6A-D). We confirmed that C/EBPa increased
to levels comparable to those of myeloblastic leukemia cells
(Figure 4B). Consistently, CD11b, a well-known myeloid marker,
was markedly upregulated by LSD1 inhibition, indicative of
a compromised erythroid identity (Figure 4C-D; supplemental
Figure 6A-B). To gain mechanistic insights, by ChIP-sequencing
analysis, we examined the effects of LSD1 inhibition on mono-
and di-methylated H3K4 (H3K4me1 and me2) that are hallmarks
of enhancer function (supplemental Figure 6E-G). Combination
analyses of the ChIP-sequencing data revealed that LSD1-
enriched sites were located close to the H3K4me1 and
H3K4me2 peaks but not to the H3K9me3 peaks (data from K562

Figure 1. High levels of LSD1 expression and glycolytic activity in erythroleukemia cells. Scatter plots showing positive correlation between LSD1 and GLUT1

expression in AML in TCGA clinical samples (n 5 173) (A) and CCLE cell lines (n 5 37) (B). Pearson product correlation coefficient and P values are indicated. (C)

Glycolysis/OXPHOS balance of HEL and HL60 cells, determined by using an extracellular flux analyzer. Values indicate the ratio of extracellular acidification rate (ECAR) and

oxygen consumption rate (OCR). Values are mean 6 standard deviation (SD) of 10 wells. (D) Expression changes of glycolytic genes in HEL cells expressing short hairpin

RNA against LSD1 (shLSD1#1). Full descriptions of gene symbols are provided in supplemental Table 2. qRT-PCR values, which were normalized to the expression levels of

the 36B4 gene, are shown as the fold difference against control (ctrl) samples. (E) Decrease of GLUT1 protein was confirmed in LSD1-KD HEL cells. Scanned images of

unprocessed blots are shown in supplemental Figure 10. (F) Reduction of glucose uptake in LSD1-KD HEL cells. 2-NBDG incorporation was determined by flow cytometry.

Mean fluorescence intensities are shown. (G) Reduced glycolytic activity in LSD1-KD HEL cells. Values are mean 6 SD of 5 assays. (H) Expression changes of glycolytic

genes under the treatment with the LSD1 inhibitor S2101. (I) Decrease of GLUT1 protein in S2101-treated HEL cells. (J) Reduction of glucose uptake by S2101 treatment.

(K) Reduction of glycolytic activity in S2101-treated HEL cells. Values are mean 6 SD of 5 assays. All samples were collected at day 4 unless indicated otherwise. All

histogram data are mean 6 SD of triplicate results unless indicated otherwise. *P , .05, **P , .01 vs control. CMP, common myeloid progenitor; FPKM, fragments per

kilobase of transcript per million mapped reads; GMP, granulocyte erythroid progenitor; HSC, hematopoietic stem cell; MEP, megakaryocyte erythroid progenitor.
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cells) (supplemental Figure 6E-F). Consistent with the H3K4
demethylating activity, LSD1-KD elevated the levels of H3K4me1
and H3K4me2 near the LSD1-enriched sites (supplemental
Figure 6G). An LSD1-KD–induced increase of H3K4me1 and
me2 was found at 42 kb downstream of the CEBPA transcription
start site, a region that has been reported as a myeloid-specific

enhancer of this gene (Figure 4E).45 By ChIP-qPCR, we confirmed
the increase of methylated H3K4 as well as H3K27ac, a mark of
active enhancers, by LSD1-KD (Figure 4F; supplemental Figure 6H-J).
Importantly, we found an occupancy of LSD1 in this region
(Figure 4E-G), suggesting that LSD1 directly represses theCEBPA
enhancer through H3K4 demethylation. Notably, GATA1 was also
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present in this region (Figure 4H; supplemental Figure 6K), and its
KD led to a remarkable upregulation of CEBPA expression
(Figure 4I). The data collectively revealed that LSD1 and GATA1
together repress theCEBPA gene, contributing to the maintenance
of erythroid cell identity.

LSD1 expression is correlated positively with

metabolic and GATA1 genes and negatively with

theCEBPA gene in EL cells

We found that LSD1 promotes glycolysis and heme synthesis by
facilitating GATA1 function in EL cells (Figure 3). To gain a broader
view of the LSD1-dependent metabolic program in AML, we
analyzed publicly available transcriptome data sets. In clinical AML
samples (data from TCGA), LSD1 and its downstream metabolic

genes such as ALAS2 and PKLRwere coexpressed with significant
correlation, and M6/M7 leukemic cells particularly showed high
expression of both genes (Figure 5A-B; red and yellow dots). In
addition, LSD1 and GATA1 genes were highly coexpressed in
M6/M7 cells among AML subtypes (Figure 5C-D), suggesting the
cooperative control of LSD1 and GATA1 in EL cells at both protein
and mRNA levels. Furthermore, consistent with our experimental
data in Figure 4, the expression of CEBPA was negatively
correlated with those of LSD1 and GATA1, particularly in M6/M7
cells among AML cell lines (data from CCLE) (Figure 5E-F).

To further evaluate the relevance of LSD1 in metabolic traits in EL,
we made use of a published data set that consists of transcriptome
profiles of 141 AML-M6 cases.36 Expression of GLUT1 and LSD1
was mildly correlated, whereas LSD1 expression did not correlate
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with ALAS2 within the M6 cases studied (supplemental Figure 7A-B).
We found significant positive correlations of LSD1 with PKLR
andGATA1, consistent with our in vitro observations (supplemental
Figure 7C-D). In addition, CEBPA was negatively correlated with
both LSD1 and GATA1 (supplemental Figure 7E-F). We then
sought to compare these M6 cases with the non-M6 cases in the
TCGA data set (n5 171). Consistent with their lineage identities, the
2 groups showed distinct expression of GATA1, CEBPA, and PU.1
(normalized to an internal control, TBP) (supplemental Figure 7G).
Scatter plot analyses revealed that enhanced expression of LSD1
coexisted with high expression ofGLUT1, ALAS2, andGATA1 in the
M6 group (supplemental Figure 7H-J), whereas CEBPA expression
was low in the same group (supplemental Figure 7K).

We next explored the possible role of LSD1 in metabolic variation at
the single-cell level using a published single-cell RNA-sequencing
data set from patients with AML; malignant cells in this data set
were classified by hallmark AML mutations.41 Of interest, we found
that when leukemic cells were divided into subpopulations
according to genotypes (mutations in FLT3, NPM1, DNMT3, and
p53 genes), there were no obvious differences in the metabolic
gene expression (supplemental Figure 8A). Using the same data
set, we found that the expression of LSD1 was correlated with
those of lineage and metabolic genes in both normal and malignant
cell populations (supplemental Figure 8B-C). These data further
emphasize the essential roles of LSD1 in shaping lineage-
dependent metabolic phenotypes in AML cells.
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C/EBPa interferes with GATA1-dependent

metabolic pathways

Although C/EBPa is known to primarily contribute to myeloid
differentiation, the role of this protein in leukemic metabolism has
not been investigated. To test this, we knocked down CEBPA in
TF1a cells that expressed a detectable basal amount of the
endogenous C/EBPa among EL cell lines (Figure 6A). Interestingly,
the loss of C/EBPa increased GATA1 protein about twice
(Figure 6B). GATA1-targeted metabolic genes such as ALAS2
and GLUT1 were upregulated by CEBPA-KD, with enhanced
enrichment of GATA1 at its target enhancers (Figure 6C-D).
Consistent with the gene expression changes, glucose uptake was
small but significantly augmented by CEBPA-KD (Figure 6E).

We next investigated whether C/EBPa participates in metabolic
reprogramming under LSD1 inhibition, using a combination of
S2101 and CEBPA-KD. In this setting, we confirmed that the
induction of CEBPA expression by S2101 was completely
abolished by CEBPA-KD (Figure 6F). Importantly, CEBPA-KD
reversed downregulation of metabolic genes, including GLUT1
under LSD1 inhibition, with a partial recovery of GATA1 binding at
target enhancers (Figure 6F-G). Consistent with this finding,
glucose uptake in LSD1-inhibited cells was restored by CEBPA-
KD (Figure 6H). The results suggest that C/EBPa suppresses
GATA1 function and thereby remodels the metabolic phenotype in
EL cells.

Finally, we tested the involvement of other transcriptional regulators
that are associated with erythroid lineage and LSD1 function.
GATA2 is known to operate at an early phase of erythroid
maturation before GATA1 expression.46 In our GATA2-KD experi-
ments in HEL cells, there were no changes in glucose uptake,
glycolytic activity, or the expression of heme synthesis genes
(supplemental Figure 9A-D), suggesting that these metabolic
pathways are specifically regulated by GATA1. We then performed

KD of GFI1, a transcriptional repressor known to cooperate with
LSD1.47 Although some of the metabolic genes were affected
by GFI1-KD, glucose uptake and glycolytic activity remained
unchanged (supplemental Figure 9E-H). In our preliminary proteo-
mic study in HEL cells, we did not find bindings of LSD1 with TAL1,
JARID1A, LDB1, or LMO2, which are known to cooperate with
LSD1 and/or GATA1 (data not shown).48,49 Taken together, these
data suggest a unique mode of metabolic gene regulation by the
LSD1/GATA1 axis.

Discussion

In the current study, we showed that LSD1 regulates both GATA1
and C/EBPa, which directly control lineage-specific and key
metabolic genes in EL cells among AML subtypes. Specifically,
LSD1 facilitates the function of an erythroid TF, GATA1, while
repressing a granulo-monocytic TF, C/EBPa (Figure 7). As
a consequence, dominance of GATA1 over C/EBPa drives the
expression of EL-dependent metabolic genes such as those
involved in glycolysis and heme synthesis. Because expression of
LSD1 was highly correlated with that of metabolic genes across
AML subtypes, balancing of lineage TFs by LSD1 likely has a broad
impact on the metabolic diversification in AML. A recent report
showed that biallelicCEBPAmutation combined with heterozygous
mutation in GATA2 induce EL in mice.50 In these mutant mice,
myeloid progenitors, which ectopically expressed erythroid TFs
including GATA1, underwent malignant transformation. Thus,
during EL development, disrupted balance of lineage TFs (possibly
induced by LSD1) may trigger metabolic reprogramming.

Enhanced glucose utilization is a hallmark of many tumor cells. In
fact, myc and HIF-1a, TFs that are commonly activated in tumors,
have been implicated in glycolytic activation.51 We and others have
previously shown that LSD1 promotes glycolysis by increasing the
stability of HIF-1a.19,52 In EL cells, we found no involvement of
LSD1 in stabilizing HIF-1a (data not shown). Instead, we showed

Erythroleukemia (AML FAB M6)

Erythroid

LSD1

LSD1

GATA1

GATA1

GATA1

Granulo-Monocyte

C/EBP

Protein
stabilization

Transcriptional
repression

Epigenetic
repression

Transcription

Down-regulation

H3K4
demethylation

CEBPA

Metabolic
phenotype
in EL cells

Glycolysis (GLUT1)
Heme synthesis (ALAS2)

Glycolysis
(cancer)

Heme synthesis
(erythroid)

Figure 7. Schematic model: control of lineage TF balance

by LSD1 defines the metabolic phenotype in EL cells.

Overexpressed LSD1 stabilizes GATA1, which activates glycolysis

and heme biosynthesis genes while LSD1 suppresses CEBPA

expression via H3K4 demethylation. Lineage-specific transcription

factors GATA1 and C/EBPa are mutually restraining. Therefore,

LSD1 inhibition derepresses CEBPA expression and down-

regulates GATA1 function, leading to metabolic remodeling and

growth arrest.

11 MAY 2021 x VOLUME 5, NUMBER 9 METABOLIC REPROGRAM BY LSD1 IN ERYTHROLEUKEMIA 2315



that LSD1 cooperates with GATA1 to transcriptionally activate key
glucose metabolism genes. These observations suggest that LSD1
is widely involved in aerobic glycolysis by using distinct sets of TFs
in various cancer types.

We found that GATA1 directly controls EL-associated metabolism
and is essential for cell growth. Our findings may be seemingly
contradictory to a previous report showing that attenuated
expression of GATA1 induces erythroid leukemia.53 However, the
authors in the same paper described that residual expression of
GATA1 contributed to malignancy. In recent reports, either a gain of
GATA1-interfering factor or a loss of GATA1-collaborator impeded
normal erythropoiesis and generated EL-like states in mice,54,55

suggesting that, while losing erythropoietic capacity, GATA1
acquires an alternative function during EL development. Thus,
a reasonable explanation of our findings is that LSD1 potentiates
the leukemogenic function of GATA1 to generate a unique
metabolic phenotype in EL. Mechanistically, we found that LSD1
binds to and stabilizes GATA1 at the protein level. Previous reports
showed that GATA1 is susceptible to caspase-mediated pro-
teolysis and is protected by HSP70,56 and that HSP27 protects
GATA1 from proteasomal degradation.57 Because we showed that
proteasome inhibition restored GATA1 under LSD1 inhibition,
LSD1 may modulate GATA1 status via the function of THE HSP
pathway. Because we observed increased GATA1 protein by
CEBPA-KD (Figure 6B), C/EBPa might also be involved in these
pathways via transcriptional regulation.

C/EBPa is essential for the differentiation of granulocytes and
monocytes.58 In a subset of AML expressing RUNX1-fusion
oncoproteins, forced expression of C/EBPa is sufficient to reverse
aberrant epigenetic programs associated with the undifferentiated
leukemic state.59 In leukemic B-cell lines, forced expression of
C/EBPa induced trans-differentiation into the macrophage lineage
and reduced the tumorigenicity.60 Furthermore, inactivating muta-
tions in theCEBPA gene have been detected at a high frequency in
AML,61 suggesting that C/EBPa acts as a tumor suppressor in
hematopoietic cells. Here, we found that the induction of C/EBPa
in LSD1-inhibited cells led to the downregulation of glycolysis and
heme synthesis genes. Thus, C/EBPa deficiency may induce
metabolic reprogramming associated with differentiation blockade
and malignant phenotypes in AML.

It is important to note that EL cells with different genetic mutations
exhibited enhanced glycolytic activities. Notably, our transcriptome
and metabolome data from different AML subtypes indicated that
glycolytic activity was highly dependent on LSD1 andGATA1 but not
on the gene mutation types. This evidence indicates that lineage
identity has a significant impact on shaping themetabolic phenotypes

in AML. Nonetheless, accumulating data suggests that genetic
background is a major determinant of AML characteristics, and that
specific mutations have been implicated in metabolic features.62,63

Thus, lineage identity and genetic lesions may cooperatively direct
metabolic reprogramming that allows AML cells to develop optimal
survival strategies.

Clinical trials for the treatment of AML with LSD1 inhibitors have
been implemented with promising outcomes.64 EL cases with
enhanced LSD1 expression may be highly sensitive to this
treatment. In this study, we showed that disruption of heme
synthesis by ALAS2-KD enhanced the toxicity of an iron chelator,
deferoxamine (supplemental Figure 4G). Because ALAS2 expres-
sion is regulated by LSD1/GATA1 axis, LSD1 inhibition combined
with disruption of iron metabolism may effectively attack metabolic
vulnerability in EL. Targeting lineage-specific metabolic features
combined with LSD1 inhibition may contribute to a highly selective
eradication of AML cells.
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