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Abstract

Background: Cancer researchers use cell lines, patient-derived xenografts, engineered mice, and tumoroids as
models to investigate tumor biology and to identify therapies. The generalizability and power of a model derive
from the fidelity with which it represents the tumor type under investigation; however, the extent to which this is
true is often unclear. The preponderance of models and the ability to readily generate new ones has created a
demand for tools that can measure the extent and ways in which cancer models resemble or diverge from native
tumors.

Methods: We developed a machine learning-based computational tool, CancerCellNet, that measures the similarity
of cancer models to 22 naturally occurring tumor types and 36 subtypes, in a platform and species agnostic
manner. We applied this tool to 657 cancer cell lines, 415 patient-derived xenografts, 26 distinct genetically
engineered mouse models, and 131 tumoroids. We validated CancerCellNet by application to independent data,
and we tested several predictions with immunofluorescence.

Results: We have documented the cancer models with the greatest transcriptional fidelity to natural tumors, we have
identified cancers underserved by adequate models, and we have found models with annotations that do not match
their classification. By comparing models across modalities, we report that, on average, genetically engineered mice
and tumoroids have higher transcriptional fidelity than patient-derived xenografts and cell lines in four out of five
tumor types. However, several patient-derived xenografts and tumoroids have classification scores that are on par with
native tumors, highlighting both their potential as faithful model classes and their heterogeneity.

Conclusions: CancerCellNet enables the rapid assessment of transcriptional fidelity of tumor models. We have made
CancerCellNet available as a freely downloadable R package (https://github.com/pcahan1/cancerCellNet) and as a web
application (http://www.cahanlab.org/resources/cancerCellNet_web) that can be applied to new cancer models that
allows for direct comparison to the cancer models evaluated here.
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Background
Models are widely used to investigate cancer biology and
to identify potential therapeutics. Popular modeling mo-
dalities are cancer cell lines (CCLs) [1], genetically engi-
neered mouse models (GEMMs) [2], patient-derived
xenografts (PDXs) [3], and tumoroids [4]. These classes
of models differ in the types of questions that they are
designed to address. CCLs are often used to address
cell-intrinsic mechanistic questions [5], GEMMs to chart
the progression of molecularly defined-disease [6], and
PDXs to explore patient-specific response to therapy in
a physiologically relevant context [7]. More recently,
tumoroids have emerged as relatively inexpensive,
physiological, in vitro 3D models of tumor epithelium
with applications ranging from measuring drug respon-
siveness to exploring tumor dependence on cancer stem
cells [4]. Models also differ in the extent to which they
represent specific aspects of a cancer type. Even with
this intra- and inter-class model variation, all models
should represent the tumor type or subtype under inves-
tigation, and not another type of tumor, and not a non-
cancerous tissue. Therefore, cancer models should be se-
lected not only based on the specific biological question
but also based on the similarity of the model to the can-
cer type under investigation [8, 9].
Various methods have been proposed to determine the

similarity of cancer models to their intended subjects.
Domcke et al. devised a ‘suitability score’ as a metric of
the molecular similarity of CCLs to high-grade serous
ovarian carcinoma based on a heuristic weighting of
copy number alterations, mutation status of several
genes that distinguish ovarian cancer subtypes, and
hypermutation status [10]. Other studies have taken
analogous approaches by either focusing on transcrip-
tomic or ensemble molecular profiles (e.g. transcrip-
tomic and copy number alterations) to quantify the
similarity of cell lines to tumors [11–13]. These studies
were tumor-type specific, focusing on CCLs that model,
for example, hepatocellular carcinoma or breast cancer.
Notably, Yu et al. compared the transcriptomes of CCLs
to The Cancer Genome Atlas (TCGA) by correlation
analysis, resulting in a panel of CCLs recommended as
most representative of 22 tumor types [14]. Most re-
cently, Najgebauer et al. [15] and Salvadores et al. [16]
have developed methods to assess CCLs using molecular
traits such as copy number alterations (CNA), somatic
mutations, DNA methylation, and transcriptomics.
While all of these studies have provided valuable infor-
mation, they leave two major challenges unmet. The first
challenge is to determine the fidelity of GEMMs, PDXs,
and tumoroids, and whether there are stark differences
between these classes of models and CCLs. The other
major unmet challenge is to enable the rapid assessment
of new, emerging cancer models. This challenge is

especially relevant now as technical barriers to generat-
ing models have been substantially lowered [17, 18], and
because new models such as PDXs and tumoroids can
be derived on patient-specific basis and therefore should
be considered distinct entities requiring individual valid-
ation [4, 19].
To address these challenges, we developed CancerCell-

Net (CCN), a computational tool that uses transcrip-
tomic data to quantitatively assess the similarity between
cancer models and 22 naturally occurring tumor types
and 36 subtypes in a platform- and species-agnostic
manner. Here, we describe CCN’s performance, and the
results of applying it to assess 657 CCLs, 415 PDXs, 26
GEMMs, and 131 tumoroids. This has allowed us to
identify the most faithful models currently available, to
document cancers underserved by adequate models, and
to find models with an inaccurate tumor type annota-
tion. Moreover, because CCN is open-source and easy to
use, it can be readily applied to newly generated cancer
models as a means to assess their fidelity.

Methods
Online methods
Training general CancerCellNet classifier
We downloaded 8991 patient tumor RNA-seq expression
count matrix, generated by TCGA research Network [20]:
https://www.cancer.gov/tcga and their corresponding sam-
ple table across 22 different tumor types using TCGA
WorkflowData, TCGAbiolinks [21], and SummarizedEx-
periment [22] packages. We used all the patient tumor
samples for training the general CCN classifier. We limited
training and analysis of RNA-seq data to the 13,142 genes
in common between the TCGA dataset and all the query
samples (CCLs, PDXs, GEMMs, and tumoroids). To train
the top pair Random Forest classifier, we used a method
similar to our previous method [23]. CCN first normalized
the training counts matrix by down-sampling the counts to
500,000 counts per sample. To significantly reduce the exe-
cution time and memory of generating gene pairs for all
possible genes, CCN then selected n upregulated genes, n
downregulated genes, and n least differentially expressed
genes (CCN training parameter nTopGenes = n) for each
of the 22 cancer categories using template matching [24] as
the genes to generate top-scoring gene pairs. In short, for
each tumor type, CCN defined a template vector that la-
beled the training tumor samples in cancer type of interest
as 1 and all other tumor samples as 0. CCN then calculated
the Pearson correlation coefficient between template vector
and gene expressions for all genes. The genes with a strong
match to the template as either upregulated or downregu-
lated had a large absolute Pearson correlation coefficient.
CCN chose the upregulated, downregulated, and least dif-
ferentially expressed genes based on the magnitude of the
Pearson correlation coefficient.
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After CCN selected the genes for each cancer type,
CCN generated gene pairs among those genes. Gene pair
transformation was a method inspired by the top-scoring
pair classifier [25] to allow compatibility of the classifier
with query expression profiles that were collected through
different platforms (e.g. microarray query data applied to
RNA-seq training data). In brief, the gene pair transform-
ation compares 2 genes within an expression sample and
encodes the “gene1_gene2” gene-pair as 1 if the first gene
has higher expression than the second gene. Otherwise,
gene pair transformation would encode the gene-pair as 0.
Using all the gene pair combinations generated through
the gene sets per cancer type, CCN then selected top m
discriminative gene pairs (CCN training parameter nTop-
GenePairs = m) for each category using template match-
ing (with large absolute Pearson correlation coefficient)
described above. To prevent any single gene from domin-
ating the gene pair list, we allowed each gene to appear at
a maximum of three times among the gene pairs selected
as features per cancer type.
After the top discriminative gene pairs were selected

for each cancer category, CCN grouped all the gene
pairs together and gene pair transformed the training
samples into a binary matrix with all the discriminative
gene pairs as row names and all the training samples as
column names. Using the binary gene pair matrix, CCN
randomly shuffled the binary values across rows then
across columns to generate random profiles that should
not resemble training data from any of the cancer cat-
egories. CCN then sampled 70 random profiles, anno-
tated them as “Unknown,” and used them as training
data for the “Unknown” category. Using gene pair binary
training matrix, CCN constructed a multi-class Random
Forest classifier of 2000 trees and used a stratified sam-
pling of 60 sample sizes to ensure a balance of training
data in constructing the decision trees.
To identify the best set of genes and gene-pair param-

eters (n and m), we used a grid-search cross-validation
[26] strategy with 5 cross-validations at each parameter
set. The specific parameters for the final CCN classifier
using the function “broadClass_train” in the package
cancerCellNet are in Additional file 1: Table S1. The
gene pairs are in Additional file 2: Table S2.

Validating general CancerCellNet classifier
Two thirds of patient tumor data from each cancer type
were randomly sampled as training data to construct a
CCN classifier. Based on the training data, CCN selected
the classification genes and gene pairs and trained a clas-
sifier. After the classifier was built, 35 held-out samples
from each cancer category were sampled and 40 “Un-
known” profiles were generated for validation. The
process of randomly sampling training set from 2/3 of
all patient tumor data, selecting features based on the

training set, training classifier, and validating was re-
peated 50 times to have a more comprehensive assess-
ment of the classifier trained with the optimal parameter
set. To test the performance of final CCN on independ-
ent testing data, we applied it to 725 profiles from ICGC
spanning 6 projects that do not overlap with TCGA
(BRCA-KR, LIRI-JP, OV-AU, PACA-AU, PACA-CA,
PRAD-FR).

Selecting decision thresholds
Our strategy for selecting a decision threshold was to
find the value that maximizes the average Macro F1
measure [27] for each of the 50 cross-validations that
were performed with the optimal parameter set, testing
thresholds between 0 and 1 with a 0.01 increment. The
F1 measure is defined as:

Macro F1 ¼ 2� precision � recall
precision þ recall

We selected the most commonly occurring threshold
above 0.2 that maximized the average Macro F1 measure
across the 50 cross-validations as the decision threshold
for the final classifier (threshold = 0.25). The same ap-
proach was applied for the subtype classifiers. The
thresholds and the corresponding average precision, re-
call, and F1 measures are recorded in (Additional file 3:
Table S3).

Classifying query data into general cancer categories
We downloaded the RNA-seq cancer cell line expression
profiles (CCLE_RNAseq_genes_counts_20180929.gct re-
leased on 02-Jan-2019) and sample table (Cell_lines_an-
notations_20181226.txt released on 11-Feb-2019) from
(https://portals.broadinstitute.org/ccle/data), and micro-
array cancer cell line expression profiles and sample
table from Barretina et al. [28]. We extracted two WT
control NCCIT RNA-seq expression profiles from Grow
et al. [29]. We received PDX expression estimates and
sample annotations from the authors of Gao et al. [19].
We gathered GEMM expression profiles from nine dif-
ferent studies [30–38]. We downloaded tumoroid ex-
pression profiles from the NCI patient-derived models
repository (PDMR) [39] and from three individual stud-
ies [40–42]. To use CCN classifier on GEMM data, the
mouse genes from GEMM expression profiles were con-
verted into their human orthologs. The query samples
were classified using the final CCN classifier. Each query
classification profile was labeled as one of the four classi-
fication categories: “correct,” “mixed,” “none,” and
“other” based on classification profiles. If a sample has a
CCN score higher than the decision threshold in the la-
beled cancer category, we assigned that as “correct.” If a
sample has CCN score higher than the decision
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threshold in labeled cancer category and in other cancer
categories, we assigned that as “mixed.” If a sample has
no CCN score higher than the decision threshold in any
cancer category or has the highest CCN score in “Un-
known” category, then we assigned it as “none.” If a
sample has CCN score higher than the decision thresh-
old in a cancer category or categories not including the
labeled cancer category, we assigned it as “other.” We
analyzed and visualized the results using R and R pack-
ages pheatmap [43] and ggplot2 [44].

Cross-species assessment
To assess the performance of cross-species classification,
we downloaded 1003 labeled human tissue/cell type and
1993 labeled mouse tissue/cell type RNA-seq expression
profiles from Radley et al. [45] (https://github.com/
pcahan1/CellNet). We first converted the mouse genes
into human orthologs. Then, we found the intersecting
genes between mouse tissue/cell expression profiles and
human tissue/cell expression profiles. Limiting the input
of human tissue RNA-seq profiles to the intersecting
genes, we trained a CCN classifier with all the human
tissue/cell expression profiles. The parameters used for
the function “broadClass_train” in the package cancer-
CellNet are in Additional file 1: Table S1. We randomly
sampled 75 samples from each tissue category in mouse
tissue/cell data and applied the classifier on those sam-
ples to assess performance.

Cross-species classifier benchmarking
The same set of training and validation data in the
“Method” section “Cross-Species Assessment” was used
to comprehensively benchmark various different classifi-
cation methods. The specific training parameters for the
16 cross-species classifiers are recorded in Additional file
4: Table S4. In brief, we used the same data transform-
ation and feature selection described in the “Method”
sections “Rank-based random forest classifier” and
“Gene pair-based KNN and SVM” to construct various
gene rank and gene pair-based classifiers. For “ComBat+
quantileNorm” data transformation, we followed the
procedure described in Salvadores et al. [16]. We first
performed quantile normalization of both human and
mouse expression profiles using R package preproces-
sCore [46] and then performed ComBat batch correc-
tions (with 2 batch labels of humans and mouse) using R
package sva [47]. For “quantileNorm” data transform-
ation, we only performed quantile normalization without
batch correction.

Cross-technology assessment
To assess the performance of CCN in applications to
microarray data, we gathered 6,219 patient tumor micro-
array profiles across 12 different cancer types from

approximately 75 different studies (Additional file 5: Table
S5). We found the intersecting genes between the micro-
array profiles and TCGA patient RNA-seq profiles. Limit-
ing the input of RNA-seq profiles to the intersecting
genes, we created a CCN classifier with all the TCGA
patient profiles using parameters for the function “broad-
Class_train” listed in Additional file 1: Table S1. After the
microarray specific classifier was trained, we randomly
sampled 60 microarray patient samples from each cancer
category and applied CCN classifier on them as an assess-
ment of the cross-technology performance.

Comparison of selected gene pairs and random gene
pairs
We performed 20 cross-validations (2/3 training data, 1/
3 validation data) to compare the performance of CCN
using selected gene pairs and randomly selected gene
pairs. To ensure a fair comparison, at each cross-
validation both methods of CCN were trained and vali-
dated using the same data, and the same CCN training
parameters (nTopGenes = 30, nTopGenePairs = 75).
Within each cross-validation, new sets of gene pairs
were selected for both types of a classifier. We first se-
lected 30 upregulated, 30 downregulated, and 30 invari-
ant genes for each cancer category using CCN training
pipeline for both types of classifiers. For normal CCN
classifier, 75 gene pairs were selected for each cancer
category. For the random gene pair CCN classifier, we
computed all gene pairs using selected genes for each
cancer category and combined them together. From the
pool of gene pairs, we randomly selected 1650 gene pairs
(the same number of gene pairs as 75 per category).

Rank-based random forest classifier
We first ranked the gene expression per sample in as-
cending order so that the most lowly expressed gene was
assigned as 1, and the most highly expressed gene was
assigned a rank of the total number of genes. Then, we
further selected the top 30 upregulated genes, 30 down-
regulated genes, and 30 invariant genes (30+30+30
genes) based on their ranks using template matching
and constructed a random forest classifier. The rank-
based random forest classifier was validated using tumor
microarray data (Additional file 5: Table S5).

Gene pair-based KNN and SVM
Using the gene pairs that were selected by the micro-
array CCN classifier, we transformed the TCGA training
data. Then, we trained KNN classifier (Python package
Scikit-learn [48]) and SVM classifier (Python package
Scikit-learn [48]) and validated them using tumor micro-
array data (Additional file 5: Table S5).
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Training and validating scRNA-seq classifier
We extracted labeled human melanoma and glioblast-
oma scRNA-seq expression profiles [49, 50] and com-
piled the two datasets excluding 3 cell types T.CD4,
T.CD8, and myeloid due to a low number of cells for
training. Sixty cells from each of the 11 cell types were
sampled for training a scRNA-seq classifier. The param-
eters for training a general scRNA-seq classifier using
the function “broadClass_train” are in Additional file 1:
Table S1. 25 cells from each of the 11 cell types from
the held-out data were selected to assess the single-cell
classifier. Using maximization of average macro F1
measure, we selected the decision threshold of 0.255.
The gene pairs that were selected to construct the classi-
fier are in Additional file 2: Table S2. To assess the
cross-technology capability of applying scRNA-seq clas-
sifier to bulk RNA-seq, we extracted 305 normal human
cell expression profiles spanning 4 purified cell types (B
cells, endothelial cells, monocyte/macrophage, fibroblast)
from data curated in the “Method” section “Cross-Spe-
cies Assessment”.

Training subtype CancerCellNet
We found 11 cancer types (BRCA, COAD, ESCA, HNSC,
KIRC, LGG, PAAD, UCEC, STAD, LUAD, LUSC) which
have meaningful subtypes based on either histology or
molecular profile and have sufficient samples to train a
subtype classifier with high AUPRCs. We also included
normal tissue samples from BRCA, COAD, HNSC, KIRC,
and UCEC to create a normal tissue category in the con-
struction of their subtype classifiers. Training samples
were either labeled as a cancer subtype for the cancer of
interest or as “Unknown” if they belong to other cancer
types. Similar to general classifier training, CCN per-
formed gene pair transformation and selected the most
discriminate gene pairs for each cancer subtype. In
addition to the gene pairs selected to discriminate cancer
subtypes, CCN also performed general classification of all
training data and appended the classification profiles of
training data with gene pair binary matrix as additional
features. The reason behind using general classification
profile as additional features is that many general cancer
types may share similar subtypes, and general classifica-
tion profile could be important features to discriminate
the general cancer type of interest from other cancer types
before performing finer subtype classification. The specific
parameters used to train individual subtype classifiers
using “subClass_train” function of CancerCellNet package
can be found in Additional file 1: Table S1 and the gene
pairs are in Additional file 2: Table S2.

Validating subtype CancerCellNet
Similar to validating a general class classifier, we ran-
domly sampled 2/3 of all samples in each cancer subtype

as training data and sampled an equal amount across
subtypes in the 1/3 held-out data for assessing subtype
classifiers. We repeated the process 20 times for a more
comprehensive assessment of subtype classifiers.

Classifying query data into subtypes
We assigned subtype to query sample if the query sam-
ple has CCN score higher than the decision threshold.
The table of decision threshold for subtype classifiers is
in Additional file 3: Table S3. If no CCN scores exceed
the decision threshold in any subtype or if the highest
CCN score is in Unknown category, then we assigned
that sample as Unknown. Analysis was performed in R
and visualizations were generated with the Complex-
Heatmap package [51].

Cells culture, immunohistochemistry, and
histomorphometry
Caov-4 (ATCC® HTB-76™), SK-OV-3(ATCC® HTB-77™),
RT4 (ATCC® HTB-2™), and NCCIT(ATCC® CRL-2073™)
cell lines were purchased from ATCC. HEC-59
(C0026001) and A2780 (93112519-1VL) were obtained
from Addexbio Technologies and Sigma-Aldrich. Vcap
and PC-3. SK-OV-3, Vcap, and RT4 were cultured in
Dulbecco’s modified Eagle medium (DMEM, high glu-
cose, 11960069, Gibco) with 1% penicillin-streptomycin-
glutamine (10378016, Life Technologies); Caov-4, PC-3,
NCCIT, and A2780 were cultured using RPMI-1640
medium (11875093, Gibco) while HEC-59 was in
Iscove’s modified Dulbecco’s medium (IMDM,
12440053, Gibco). Both media were supplemented with
1% penicillin-streptomycin (15140122, Gibco). All me-
diums included 10% fetal bovine serum (FBS).
Cells cultured in a 48-well plate were washed twice

with PBS and fixed in 10% buffered formalin for 24 h at
4°C. Immunostaining was performed using a standard
protocol. Cells were incubated with primary antibodies
to goat HOXB6 (10 μg/mL, PA5-37867, Invitrogen),
mouse WT1 (10 μg/mL, MA1-46028, Invitrogen), rabbit
PPARG (1:50, ABN1445, Millipore), mouse FOLH1 (10
μg/mL, UM570025, Origene), and rabbit LIN28A (1:50,
#3978, Cell Signaling) in Antibody Diluent (S080981-2,
DAKO), at 4 °C overnight followed with three 5 min
washes in TBST. The slides were then incubated with
secondary antibodies conjugated with fluorescence at
room temperature for 1 h while avoiding light followed
with three 5 min washes in TBST and nuclear stained
with mounting medium containing DAPI. Images were
captured by Nikon EcLipse Ti-S, DS-U3, and DS-Qi2.
Histomorphometry was performed using ImageJ (Ver-

sion 2.0.0-rc-69/1.52i). % N.positive cells was calculated
by the percentage of the number of positive stained cells
divided by the number of DAPI-positive nucleus within
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three of randomly chosen areas. The data were
expressed as means ± SD.

Tumor purity analysis
We used the R package ESTIMATE [52] to calculate the
ESTIMATE scores from TCGA tumor expression pro-
files that we used as training data for CCN classifier. To
calculate tumor purity, we used the equation described
in Yoshihara et al. [52]:

Tumour purity ¼ cos
�
0:6049872018þ 0:0001467884

�ESTIMATE scoreÞ

Extracting citation counts
We used the R package RISmed [53] to extract the num-
ber of citations for each cell line through query search of
“cell line name[Text Word] AND cancer[Text Word]”
on PubMed. The citation counts were normalized by
dividing the citation counts with the number of years
since first documented.

Normalized citation counts

¼ citation counts
#years since first documented

GRN construction and GRN Status
Gene regulatory network (GRN) construction was ex-
tended from our previous method [54]. Eighty samples
per cancer type were randomly sampled and normalized
through downsampling as training data for the CLR
GRN construction algorithm. Cancer type-specific GRNs
were identified by determining the differentially
expressed genes per each cancer type and extracting the
subnetwork using those genes.
To extend the original GRN status algorithm [54]

across different platforms and species, we devised a
rank-based GRN status algorithm. Like the original GRN
status, rank-based GRN status is a metric of assessing
the similarity of cancer type-specific GRN between train-
ing data in the cancer type of interest and query sam-
ples. Hence, high GRN status represents a high level of
establishment or similarity of the cancer-specific GRN in
the query sample compared to those of the training data.
Expression profiles of training data were first ranked
using the same method described in the “Method” sec-
tion “Rank-based random forest classifier”. Cancer type-
specific mean and standard deviation of every gene’s
rank expression were learned from training data. The
modified Z-score values for genes within cancer type-
specific GRN were calculated for query sample’s rank
expression profiles to quantify the dissimilarity between
query sample’s cancer type-specific GRN and that of the
reference training data:

Zscore gene ið Þmod ¼
0; if Zscore is positive and the gene is found to be upregulated

0; if Zscore is negative and the gene is found to be downregulated
abs Zscoreð Þ; otherwise

8
<

:

If a gene in the cancer type-specific GRN is found to
be upregulated in the specific cancer type relative to
other cancer types and if the ranking of the query sam-
ple’s gene is equal to or greater than the mean ranking
of the gene in the target training sample, then we would
consider query sample’s gene to be similar to that of
training sample. As a result of similarity, we assign that
gene of a modified Z-score of 0. The same principle ap-
plies to cases where the gene is downregulated in
cancer-specific subnetwork. Otherwise, the modified Z-
score is the same as the absolute value of Z-score.
GRN status for query sample is calculated as the

weighted mean of the (1000 − Zscore(gene i)mod) across
genes in cancer type-specific GRN. 1000 is an arbitrary
large number, and larger dissimilarity between query’s
cancer type-specific GRN leads to high Z-scores for the
GRN genes and low GRN status.

RGS ¼
Xn

i¼1
1000−Zscore gene ið Þmod

� �
weightgene i

GRN Status ¼ RGS
Pn

i¼1weightgene i

The weight of individual genes in the cancer-specific
network is determined by the importance of the gene in
the CCN classifier. Finally, the GRN status gets normal-
ized with respect to the GRN status of the cancer type
of interest and the cancer type with the lowest mean
GRN status.

Normalized GRN status ¼ GRN statusquery−avgðGRN status min cancerÞ
avgðGRN statuscancer type interestÞ−avgðGRN status min cancerÞ

“min cancer” represents the cancer type where its train-
ing data have the lowest mean GRN status in the cancer
type of interest, and avg(GRN statusmin cancer) represents
the lowest average GRN status in the cancer type of
interest. avg(GRN statuscancer type interest) represents the
average GRN status of the cancer type of interest in the
training data.

Results
CancerCellNet classifies samples accurately across species
and technologies
Previously, we had developed a computational tool using
the random forest classification method to measure the
similarity of engineered cell populations to their in vivo
counterparts based on transcriptional profiles [45, 54].
More recently, we elaborated on this approach to classify
single-cell RNA-seq data in a manner that allows for
cross-platform and cross-species analysis [23]. Here, we
used an analogous approach to build a platform that
would allow us to quantitatively compare cancer models
to naturally occurring patient tumors (Fig. 1a). In brief,
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Fig. 1 (See legend on next page.)
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we used TCGA RNA-seq expression data from 22 solid
tumor types to train a top-pair multi-class random forest
classifier (Fig. 1b). We combined training data from rec-
tal adenocarcinoma (READ) and colon adenocarcinoma
(COAD) into one COAD_READ category because READ
and COAD are considered to be virtually indistinguish-
able at a molecular level [55]. We included an “Un-
known” category trained using randomly shuffled gene
pair profiles generated from the training data of 22
tumor types to identify query samples that are not re-
flective of any of the training data. To estimate the per-
formance of CCN and how it is impacted by parameter
variation, we performed a parameter sweep with 5-fold
2/3 cross-validation strategy (i.e., 2/3 of the data sampled
across each cancer type was used to train, 1/3 was used
to validate) (Fig. 1c). The performance of CCN, as mea-
sured by the mean area under the precision recall curve
(AUPRC), did not fall below 0.945 and remained rela-
tively stable across parameter sets (Additional file 6: Fig.
S1A). The optimal parameters resulted in 1979 features.
The mean AUPRCs exceeded 0.95 in most tumor types
with this optimal parameter set (Fig. 1d, Additional file
6: Fig. S1B). The AUPRCs of CCN applied to independ-
ent RNA-seq data from 725 tumors across five tumor
types from the International Cancer Genome Consor-
tium (ICGC) [56] ranged from 0.93 to 0.99, supporting
the notion that the platform is able to accurately classify
tumor samples from diverse sources (Fig. 1e).
As one of the central aims of our study is to compare

distinct cancer models, including GEMMs, our method
needed to be able to classify samples from mouse and
human samples equivalently. We used the Top-Pair
transform [23] to achieve this, and we tested the feasibil-
ity of this approach by assessing the performance of a
normal (i.e. non-tumor) cell and tissue classifier trained
on human data and applied to mouse samples. Consist-
ent with prior applications [23], we found that the cross-
species classifier performed well, achieving the mean
AUPRC of 0.97 when applied to mouse data (Additional
file 6: Fig. S1C).

Since cross-species classification is relatively new in the
application of assessing cancer models, we performed an
exhaustive benchmark of 16 potential classification
methods through different combinations of classification
algorithms (Random Forest, SVM, KNN), data transfor-
mations (gene pairs, gene rank, quantile normalization,
ComBat corrected quantile normalization), and feature se-
lection strategies (selection of genes/gene pairs, none,
random gene pairs generated from selected genes). For
the comparison, because other classification methods do
not have Unknown category, the AUPRC for Unknown
category in CCN was removed. We found that 13
methods had mean AUPRCs greater than 0.95 (Additional
file 6: Fig. S1D). CCN achieved the highest mean AUPRC
of 0.98, had the lowest standard deviation in AUPRC of
0.014, and was the only classification method that had an
AUPRC above 0.95 for all cell types suggesting that it is at
least as good as other methods.
We also performed several benchmarking analyses to

assess how transformation methods, classification algo-
rithms, and feature selection strategies perform in terms
of cross-platform classification of tumor data. To test
gene pair transformation with an alternative platform-
agnostic feature engineering method, we compared the
performance of random forest classifiers trained using
gene pairs and random forest classifiers trained using
template matching [24] selected gene ranks (i.e. gene ex-
pression ranked in ascending order). The two classifiers
performed similarly in terms of cross-platform (i.e. clas-
sifier trained using RNA-seq training data and applied to
microarray query) performance with gene pair-based
classifier achieving mean AUPRC (without “Unknown”)
of 0.93 and gene rank-based classifier achieving 0.92
(Additional file 6: Fig. S1E). These results indicate that
despite the potential loss of information through binari-
zation of features, gene pairs are just as capable of pro-
ducing high-performing classifiers as using the ranked
expression data. Next, we compared the performance of
gene pair random forest with two other classification al-
gorithms: SVM and KNN. Similar to our results for

(See figure on previous page.)
Fig. 1 CancerCellNet (CCN) workflow, training, and performance. a Schematic of CCN usage. CCN was designed to assess and compare the
expression profiles of cancer models such as CCLs, PDXs, GEMMs, and tumoroids with native patient tumors. To use trained classifier, CCN inputs
the query samples (e.g. expression profiles from CCLs, PDXs, GEMMs, tumoroids) and generates a classification profile for the query samples. The
column names of the classification heatmap represent sample annotation and the row names of the classification heatmap represent different
cancer types. Each grid is colored from black to yellow representing the lowest classification score (e.g. 0) to highest classification score (e.g. 1). b
Schematic of CCN training process. CCN uses patient tumor expression profiles of 22 different cancer types from TCGA as training data. First, CCN
identifies n genes that are upregulated, n that are downregulated, and n that are relatively invariant in each tumor type versus all of the others.
Then, CCN performs a pair transform on these genes and subsequently selects the most discriminative set of m gene pairs for each cancer type
as features (or predictors) for the random forest classifier. Lastly, CCN trains a multi-class random forest classifier using gene-pair transformed
training data. c Parameter optimization strategy. Five cross-validations of each parameter set in which 2/3 of TCGA data was used to train and 1/3
to validate was used to search for the values of n and m that maximized performance of the classifier as measured by area under the precision
recall curve (AUPRC). d Mean and standard deviation of classifiers based on 50 cross-validations with the optimal parameter set. e AUPRCs of the
final CCN classifier when applied to independent patient tumor data from ICGC
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cross-species benchmark, gene pair-based random forest
(mean AUPRC 0.93) outperforms gene pair-based KNN
(mean AUPRC 0.92) and SVM (mean AUPRC 0.67)
(Additional file 6: Fig. S1F). Lastly, to study the effective-
ness of gene pair selection, which is a computationally
demanding step in the training process, we compared
the performance of a CCN classifier trained using gene
pairs selected using a second round of template match-
ing [24] versus a classifier trained with gene pairs se-
lected randomly from the genes derived from the first
round of template matching. In short, the average mean
AUPRCs across 20 cross-validations between the se-
lected gene pairs CCN classifier and random gene pair
CCN classifier are 0.959 and 0.956, respectively (Add-
itional file 6: Fig. S1G). Even though the random selec-
tion of gene pairs in the second round is as good as
another round of template matching, we used the latter
to retain a degree of consistency in the set of gene pairs
derived for the classifiers.
To evaluate cancer models at a finer resolution, we

also developed a random forest-based approach to per-
form tumor subtype classifications (Additional file 6: Fig.
S2A). Several recent studies have also developed
methods to systematically categorize pan-cancer CCLs
into cancer subtypes [14–16]. Yu et al. [14] utilized the
Nearest Template Prediction [57] to construct 9 differ-
ent solid tumor subtype classifiers based on transcrip-
tomic data. Najgebauer et al. [15] developed the
platform CELLector that utilizes genomic alternations to
categorize CCLs into tumor subtypes. Salvadores et al.
[16] used transcriptomic and epigenomic data to build
ridge regression models for predicating subtypes in 15
general cancer types. Here, we constructed 11 different
cancer subtype classifiers based on the availability of
subtype information [55, 58–68]. We also included non-
cancerous, normal tissues as categories for several sub-
type classifiers when sufficient data was available: breast
invasive carcinoma (BRCA), COAD_READ, head and
neck squamous cell carcinoma (HNSC), kidney renal
clear cell carcinoma (KIRC), and uterine corpus endo-
metrial carcinoma (UCEC). The 11 subtype classifiers all
achieved high overall average AUPRCs ranging from
0.80 to 0.99 (Additional file 6: Fig. S2B).

Fidelity of cancer cell lines
Having validated the performance of CCN, we then
used it to determine the fidelity of CCLs. We mined
RNA-seq expression data of 657 different cell lines
across 20 cancer types from the Cancer Cell Line
Encyclopedia (CCLE) [69] and applied CCN to them,
finding a wide classification range for cell lines of
each tumor type (Fig. 2a, Additional file 7: Table S6).
To verify the classification results, we applied CCN to
expression profiles from CCLE generated through

microarray expression profiling [28]. To ensure that
CCN would function on microarray data, we tested it
by applying a CCN classifier created to test micro-
array data to 720 expression profiles of 12 tumor
types. The cross-platform CCN classifier performed
well, based on the comparison to study-provided an-
notation, achieving a mean AUPRC (with Unknown)
of 0.916 (Additional file 6: Fig. S3A). Next, we applied
this cross-platform classifier to microarray expression
profiles from CCLE (Additional file 6: Fig. S3B). From
the classification results of 571 cell lines that have
both RNA-seq and microarray expression profiles, we
found a strong overall positive association between
the classification scores from RNA-seq and those
from microarray (Additional file 6: Fig. S3C). This
comparison supports the notion that the classification
scores for each cell line are not artifacts of profiling
methodology. Moreover, this comparison shows that
the scores are consistent between the times that the
cell lines were first assayed by microarray expression
profiling in 2012 and by RNA-seq in 2019. We also
observed a high level of correlation between our ana-
lysis and the analysis done by Yu et al. [14] (Add-
itional file 6: Fig. S3D), further validating the
robustness of the CCN results.
Next, we assessed the extent to which CCN classifica-

tions agreed with their nominal tumor type of origin,
which entailed translating quantitative CCN scores to
classification labels. To achieve this, we selected a deci-
sion threshold that maximized the Macro F1 measure,
the harmonic mean of precision and recall, across 50
cross-validations. Then, we annotated cell lines based
on their CCN score profiles as follows. Cell lines with
CCN scores > threshold for the tumor type of origin
were annotated as “correct.” Cell lines with CCN scores
> threshold in the tumor type of origin and at least one
other tumor type were annotated as “mixed.” Cell lines
with CCN scores > threshold for tumor types other
than that of the cell line’s origin were annotated as
“other.” Cell lines that did not receive a CCN score >
threshold for any tumor type were annotated as “none”
(Fig. 2b). We found that majority of cell lines originally
annotated as breast invasive carcinoma (BRCA), cer-
vical squamous cell carcinoma, and endocervical adeno-
carcinoma (CESC), skin cutaneous melanoma (SKCM),
colorectal cancer (COAD_READ), and sarcoma (SARC)
fell into the “correct” category (Fig. 2b). On the other
hand, no esophageal carcinoma (ESCA), pancreatic
adenocarcinoma (PAAD), or brain lower grade glioma
(LGG) were classified as “correct,” demonstrating the
need for more transcriptionally faithful cell lines that
model those general cancer types.
There are several possible explanations for cell lines

not receiving a “correct” classification. One possibility is
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Fig. 2 Evaluation of cancer cell lines. a General classification heatmap of CCLs extracted from CCLE. Column annotations of the heatmap
represent the labeled cancer category of the CCLs given by CCLE and the row names of the heatmap represent different cancer categories. b Bar
plot represents the proportions of each classification category in CCLs across cancer types ordered from the cancer types with the highest
proportion of correct and correct mixed CCLs to lowest proportion. CCLs’ general classification profiles are categorized into 4 categories: correct
(red), correct mixed (pink), no classification (light green), and other classification (dark green) based on the decision threshold of 0.25. c
Comparison between SKCM general CCN scores from bulk RNA-seq classifier and SKCM malignant CCN scores from scRNA-seq classifier for SKCM
CCLs. d Comparison between SARC general CCN scores from bulk RNA-seq classifier and CAF CCN scores from scRNA-seq classifier for SKCM
CCLs. e Comparison between GBM general CCN scores from bulk RNA-seq classifier and GBM neoplastic CCN scores from scRNA-seq classifier for
GBM CCLs. f Comparison between SARC general CCN scores and CAF CCN scores from scRNA-seq classifier for GBM CCLs. The green dotted lines
indicate the decision threshold for scRNA-seq classifier and general classifier
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that the sample was incorrectly labeled in the study from
which we harvested the expression data. Consistent with
this explanation, we found that colorectal cancer line
NCI-H684 [70, 71], a cell line mislabeled as liver hepato-
cellular carcinoma (LIHC), was classified strongly as
COAD_READ (Additional file 7: Table S6). Similarly,
our findings indicate that COLO 741, a skin melanoma
cell line historically mistaken to be of colon adenocar-
cinoma origin [70], was classified as SKCM (Additional
file 7: Table S6). This finding agrees with those of Salva-
dores et al. [16]. Another possibility to explain low CCN
score is that cell lines were derived from subtypes of tu-
mors that are not well-represented in TCGA. To explore
this hypothesis, we first performed tumor subtype classi-
fication on CCLs from 11 tumor types for which we had
trained subtype classifiers (Additional file 8: Table S7).
We reasoned that if a cell was a good model for a rarer
subtype, then it would receive a poor general classifica-
tion but a high classification for the subtype that it
models well. Therefore, we counted the number of lines
that fit this pattern. We found that of the 188 lines with
no general classification, 25 (13%) were classified as a
specific subtype, suggesting that derivation from rare
subtypes is not the major contributor to the poor overall
fidelity of CCLs.
Another potential contributor to low-scoring cell lines

is intra-tumor stromal and immune cell impurity in the
training data. If impurity were a confounder of CCN
scoring, then we would expect a strong positive correl-
ation between mean purity and mean CCN classification
scores of CCLs per general tumor type. However, the
Pearson correlation coefficient between the mean purity
of general tumor type and mean CCN classification
scores of CCLs in the corresponding general tumor type
was low (0.14), suggesting that tumor purity is not a
major contributor to the low CCN scores across CCLs
(Additional file 6: Fig. S3E).

Comparison of SKCM and GBM CCLs to scRNA-seq
To more directly assess the impact of intra-tumor het-
erogeneity in the training data on evaluating cell lines,
we constructed a classifier using cell types found in hu-
man melanoma and glioblastoma scRNA-seq data [49,
50]. Previously, we have demonstrated the feasibility of
using our classification approach on scRNA-seq data
[23]. Our scRNA-seq classifier achieved a high average
AUPRC (0.95) when applied to held-out data and high
mean AUPRC (0.99) when applied to few purified bulk
testing samples (Additional file 6: Fig. S4A-B). Compar-
ing the CCN score from bulk RNA-seq general classifier
and scRNA-seq classifier, we observed a high level of
correlation (Pearson correlation of 0.89) between the
SKCM CCN classification scores and scRNA-seq SKCM
malignant CCN classification scores for SKCM cell lines

(Fig. 2c, Additional file 6: Fig. S4C). Of the 41 SKCM cell
lines that were classified as SKCM by the bulk classifier,
37 were also classified as SKCM malignant cells by the
scRNA-seq classifier. Interestingly, we also observed a
high correlation between the SARC CCN classification
score and scRNA-seq cancer-associated fibroblast (CAF)
CCN classification scores (Pearson correlation of 0.92)
(Fig. 2d). Six of the seven SKCM cell lines that had been
classified as exclusively SARC by CCN were classified as
CAF by the scRNA-seq classifier (Fig. 2d, Additional file
6: Fig. S4C). This suggests the possibility that these cell
lines were derived from CAF or other mesenchymal
populations, or that they have acquired a mesenchymal
character through their derivation. The high level of
agreement between scRNA-seq and bulk RNA-seq clas-
sification results shows that heterogeneity in the training
data of general CCN classifier has little impact in the
classification of SKCM cell lines.
In contrast, we observed a weaker correlation between

GBM CCN classification scores and scRNA-seq GBM
neoplastic CCN classification scores (Pearson correlation
of 0.72) for GBM cell lines (Fig. 2e, Additional file 6: Fig.
S4D). Of the 31 GBM lines that were not classified as
GBM with CCN, 25 were classified as GBM neoplastic
cells with the scRNA-seq classifier. Among the 22 GBM
lines that were classified as SARC with CCN, 15 cell
lines were classified as CAF (Fig. 2f), 10 of which were
classified as both GBM neoplastic and CAF in the
scRNA-seq classifier. Similar to the situation with SKCM
lines that classify as CAF, this result is consistent with
the possibility that some GBM lines classified as SARC
by CCN could be derived from mesenchymal subtypes
exhibiting both strong mesenchymal signatures and glio-
blastoma signatures or that they have acquired a mesen-
chymal character through their derivation. The lower
level of agreement between scRNA-seq and bulk RNA-
seq classification results for GBM models suggests that
the heterogeneity of glioblastomas [72] can impact the
classification of GBM cell lines, and that the use of
scRNA-seq classifier can resolve this deficiency.

Immunofluorescence confirmation of CCN predictions
To experimentally explore some of our computational
analyses, we performed immunofluorescence on three
cell lines that were not classified as their labeled categor-
ies: the ovarian cancer line SK-OV-3 had a high UCEC
CCN score (0.246), the ovarian cancer line A2780 had a
high Testicular Germ Cell Tumors (TGCT) CCN score
(0.327), and the prostate cancer line PC-3 had a high
bladder cancer (BLCA) score (0.307) (Additional file 7:
Table S6). We reasoned that if SK-OV-3, A2780, and
PC-3 were classified most strongly as UCEC, TGCT, and
BLCA, respectively, then they would express proteins
that are indicative of these cancer types.
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First, we measured the expression of the uterine-
associated transcription factor HOXB6 [73, 74], and the
UCEC serous ovarian tumor biomarker WT1 [75] in SK-
OV-3, in the OV cell line Caov-4, and in the UCEC cell
line HEC-59. We chose Caov-4 as our positive control
for OV biomarker expression because it was determined
by our analysis and others [10, 14] to be a good model
of OV. Likewise, we chose HEC-59 to be a positive con-
trol for UCEC. We found that SK-OV-3 has a small per-
centage (5%) of cells that expressed the uterine marker
HOXB6 and a large proportion (73%) of cells that
expressed WT1 (Fig. 3a). In contrast, no Caov-4 cells
expressed HOXB6, whereas 85% of cells expressed WT1.
This suggests that SK-OV-3 exhibits both biomarkers of
ovarian tumor and uterine tissue. From our computa-
tional analysis and experimental validation, SK-OV-3 is
most likely an endometrioid subtype of ovarian cancer.
This result is also consistent with prior classification of
SK-OV-3 [76], and the fact that SK-OV-3 lacks p53 mu-
tations, which is prevalent in high-grade serous ovarian
cancer [77], and it harbors an endometrioid-associated
mutation in ARID1A [10, 76, 78]. Next, we measured
the expression of markers of OV and germ cell cancers
(LIN28A [79]) in the OV-annotated cell line A2780,
which received a high TCGT CCN score comparable to
those of human embryonic carcinoma cells, NCCIT [29]
(Fig. 3b). Fifty-four percent of A2780 and 66% of NCCIT
cells expressed LIN28A, whereas it was not detected in
Caov-4 (Fig. 3b). The OV marker WT1 was also
expressed in fewer A2780 cells as compared to Caov-4
(48% vs 85%), which suggests that A2780 could be a
germ cell-derived ovarian tumor. Taken together, our re-
sults suggest that SK-OV-3 and A2780 could represent
OV subtypes that are not well represented in TCGA
training data, which resulted in a low OV score and
higher CCN score in other categories.
Lastly, we examined PC-3, annotated as a PRAD cell

line but classified to be most similar to BLCA. We found
that 30% of the PC-3 cells expressed PPARG, a contribu-
tor to urothelial differentiation [80] that is not detected
in the PRAD Vcap cell line but is highly expressed in the
BLCA RT4 cell line (Fig. 3c). PC-3 cells also expressed
the PRAD biomarker FOLH1 [81] suggesting that PC-3
has a PRAD origin and gained urothelial or luminal
characteristics through the derivation process. In short,
our limited experimental data support the CCN classifi-
cation results.

Subtype classification of cancer cell lines
Next, we explored the subtype classification of CCLs
from three general tumor types in more depth. We fo-
cused our subtype visualization (Fig. 4a–c) on CCL
models with general CCN score above 0.1 in their nom-
inal cancer type as this allowed us to analyze those

models that fell modestly below the general threshold
but were classified as a specific sub-type (Additional file
7: Table S6, Additional file 8: Table S7). We focused first
on UCEC. The histologically defined subtypes of UCEC,
endometrioid and serous, differ in prevalence, molecular
properties, prognosis, and treatment. For instance, the
endometrioid subtype, which accounts for approximately
80% of uterine cancers, retains estrogen receptor and
progesterone receptor status and is responsive towards
progestin therapy [82, 83]. Serous, a more aggressive
subtype, is characterized by the loss of estrogen and pro-
gesterone receptor and is not responsive to progestin
therapy [82, 83]. CCN classified the majority of the
UCEC cell lines as serous except for JHUEM-1 which is
classified as mixed, with similarities to both endome-
trioid and serous (Fig. 4a). The preponderance CCLE
lines of serous versus endometroid character may be due
to properties of serous cancer cells that promote their
in vitro propagation, such as upregulation of cell adhe-
sion transcriptional programs [84]. Some of our subtype
classification results are consistent with prior observa-
tions. For example, HEC-1A, HEC-1B, and KLE were
previously characterized as type II endometrial cancer,
which includes a serous histological subtype [85]. On
the other hand, our subtype classification results contra-
dict prior observations in at least one case. For instance,
the Ishikawa cell line was derived from type I endomet-
rial cancer (endometrioid histological subtype) [85, 86];
however, CCN classified a derivative of this line, Ishi-
kawa 02 ER-, as serous. The high serous CCN score
could result from a shift in phenotype of the line con-
comitant with its loss of estrogen receptor (ER) as this is
a distinguishing feature of type II endometrial cancer
(serous histological subtype) [82]. Taken together, these
results indicate a need for more endometroid-like CCLs.
Next, we examined the subtype classification of lung

squamous cell carcinoma (LUSC) and lung adenocar-
cinoma (LUAD) cell lines (Fig. 4b, c). All the LUSC
lines with at least one subtype classification had an
underlying primitive subtype classification. This is
consistent either with the ease of deriving lines from
tumors with a primitive character, or with a process
by which cell line derivation promotes similarity to
more primitive subtype, which is marked by increased
cellular proliferation [60]. Some of our results are
consistent with prior reports that have investigated
the resemblance of some lines to LUSC subtypes. For
example, HCC-95, previously characterized as classical
[60, 87], had a maximum CCN score in the classical
subtype (0.429). Similarly, LUDLU-1 and EPLC-272H,
previously reported as classical [87] and basal [87] re-
spectively, had maximal tumor subtype CCN scores
for these subtypes (0.323 and 0.256) (Fig. 4b, Add-
itional file 8: Table S7) despite being classified as
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Fig. 3 (See legend on next page.)
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Unknown. To place our results in the context of
more recent work on subtyping CCLs, we compared
our subtype results to two studies that made subtype
predictions using the same LUSC subtype classifica-
tion system. CCN generated high sub-type scores in
agreement with 11/22 (45%) of the lines predicted by
Yu et al. and 4/11 (36%) of the lines predicted by Sal-
vadores et al. (Additional file 9: Table S8). The over-
all moderate levels of agreement could be explained
by some combination of differences in methodologies,
data type, and a loss of sub-type character upon line
derivation.
Lastly, the LUAD cell lines that were classified as a

subtype were either classified as proximal inflamma-
tion or proximal proliferation (Fig. 4c). RERF-LC-Ad1
had the highest general classification score and the
highest proximal inflammation subtype classification
score. Taken together, these subtype classification re-
sults suggest an absence of cell line models for basal
and secretory LUSC and for the terminal respiratory
unit (TRU) LUAD subtype.

Cancer cell lines’ popularity and transcriptional fidelity
Finally, we sought to measure the extent to which cell
line transcriptional fidelity related to model preva-
lence. We used the number of papers in which a
model was mentioned, normalized by the number of
years since the cell line was documented, as a rough
approximation of model prevalence. To explore this
relationship, we plotted the normalized citation count
versus general classification score, labeling the highest
cited and highest classified cell lines from each gen-
eral tumor type (Fig. 4d). For most of the general
tumor types, the highest cited cell line is not the
highest classified cell line except for Hep G2, AGS,
and ML-1, representing liver hepatocellular carcinoma
(LIHC), stomach adenocarcinoma (STAD), and thy-
roid carcinoma (THCA), respectively. On the other
hand, the general scores of the highest cited cell lines
representing BLCA (T24), BRCA (MDA-MB-231), and
PRAD (PC-3) fall below the classification threshold of
0.25. Notably, each of these tumor types has other
lines with scores exceeding 0.5, which should be

considered as more faithful transcriptional models
when selecting lines for a study (Additional file 7:
Table S6 and http://www.cahanlab.org/resources/
cancerCellNet_results/).

Evaluation of patient-derived xenografts
Next, we sought to evaluate a more recent class of can-
cer models: PDX. To do so, we subjected the RNA-seq
expression profiles of 415 PDX models from 13 different
cancer types generated previously [19] to CCN. Similar
to the results of CCLs, the PDXs exhibited a wide range
of classification scores (Fig. 5a, Additional file 10: Table
S9). By categorizing the CCN scores of PDX based on
the proportion of samples associated with each tumor
type that were correctly classified, we found that SARC,
SKCM, COAD_READ, and BRCA have a higher propor-
tion of correctly classified PDX than those of other can-
cer categories (Fig. 5b). In contrast to CCLs, we found a
higher proportion of correctly classified PDX in STAD,
PAAD, and KIRC (Fig. 5b). However, similar to CCLs,
no ESCA PDXs were classified as such. This held true
when we performed subtype classification on PDX sam-
ples: none of the PDX in ESCA was classified as any of
the ESCA subtypes (Additional file 11: Table S10).
UCEC PDXs had both endometrioid subtypes, serous
subtypes, and mixed subtypes, which provided a broader
representation than CCLs (Fig. 5c). Several LUSC PDXs
that were classified as a subtype were also classified as
head and neck squamous cell carcinoma (HNSC) or mix
HNSC and LUSC (Fig. 5d). This could be due to the
similarity in expression profiles of basal and classical
subtypes of HNSC and LUSC [60, 88], which is consist-
ent with the observation that these PDXs were also sub-
typed as classical. No LUSC PDXs were classified as the
secretory subtype. In contrast to LUAD CCLs, four of
the five LUAD PDXs with a discernible sub-type were
classified as proximal proliferation (Fig. 5e). On the
other hand, similar to the CCLs, there were no TRU
subtypes in the LUAD PDX cohort. In summary, we
found that while individual PDXs can reach extremely
high transcriptional fidelity for both general tumor types
and subtypes, many PDXs were not classified as the gen-
eral tumor type from which they originated.

(See figure on previous page.)
Fig. 3 Immunofluorescence of selected cell lines. a Classification profiles (left) and IF expression (middle) of Caov-4 (OV-positive control), HEC-59
(UCEC-positive control), and SK-OV-3 for WT1 (OV biomarker) and HOXB6 (uterine biomarker). The rightmost bar plots quantify the average
percentage of positive cells for WT1 (top-right) and HOXB6 (bottom-right). b Classification profiles (left) and IF expression (middle) of Caov-4,
NCCIT (germ cell tumor-positive control), and A2780 for WT1 and LIN28A (germ cell tumor biomarker). Classification was performed on replicates
of NCCIT RNA-seq profiles. The rightmost bar plots quantify the average percentage of positive cells for WT1 (top-right) and LIN28A (bottom-
right). c Classification profiles (left) and IF expression (middle) of Vcap (PRAD positive control), RT4 (BLCA-positive control), and PC-3 for FOLH1
(prostate biomarker) and PPARG (urothelial biomarker). The rightmost bar plots quantify the average percentage of positive cells for FOLH1 (top-
right) and PPARG (bottom-right)
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Fig. 4 Subtype classification of CCLs and CCL prevalence. The heatmap visualizations of subtype classification for a UCEC CCLs, b LUSC CCLs, and
c LUAD CCLs. Only samples with general CCN scores > 0.1 in their nominal tumor type are displayed. d Comparison of normalized citation
counts and general CCN classification scores of CCLs. Labeled cell lines either have the highest CCN classification score in their labeled cancer
category or highest normalized citation count. Each citation count was normalized by a number of years since first documented on PubMed
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Evaluation of GEMMs
Next, we used CCN to evaluate GEMMs of six general
tumor types from nine studies for which expression data
was publicly available [30–38]. As was true for CCLs
and PDXs, GEMMs also had a wide range of CCN
scores (Fig. 6a, Additional file 12: Table S11). We next
categorized the CCN scores based on the proportion of
samples associated with each tumor type that were cor-
rectly classified (Fig. 6b). In contrast to LGG CCLs, LGG
GEMMs, generated by Nf1 mutations expressed in dif-
ferent neural progenitors in combination with Pten

deletion [37], consistently were classified as LGG (Fig.
6a, b). The GEMM dataset included multiple replicates
per model, which allowed us to examine intra-GEMM
variability. Both at the level of CCN scores and at the
level of categorization, GEMMs were invariant. For ex-
ample, replicates of UCEC GEMMs driven by Prg(cre/+
)Pten(lox/lox) received almost identical general CCN
scores (Fig. 6c, Additional file 12: Table S11). GEMMs
sharing genotypes across studies, such as LUAD
GEMMs driven by Kras mutation and loss of p53 [30,

Fig. 5 Evaluation of patient derived xenografts. a General classification heatmap of PDXs. Column annotations represent annotated cancer type of the
PDXs and row names represent cancer categories. b Proportions of classification categories in PDXs across cancer types are visualized in the bar plot
and ordered from the cancer type with the highest proportion of correct and mixed correct PDXs to the lowest. Subtype classification heatmaps of
c UCEC PDXs, d LUSC PDXs, and e LUAD PDXs. Only samples with general CCN scores > 0.1 in their nominal tumor type are displayed
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Fig. 6 (See legend on next page.)
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36, 38], also received similar general and subtype classifi-
cation scores (Fig. 6a, b, e).
Next, we explored the extent to which genotype im-

pacted subtype classification in UCEC, LUSC, and LUAD
(Fig. 6c–e, Additional file 13: Table S12). Prg(cre/+)Pten(-
lox/lox) GEMMs had a mixed subtype classification of
both serous and endometrioid, consistent with the fact
that Pten loss occurs in both subtypes (albeit more fre-
quently in endometrioid). We also analyzed Prg(cre/+
)Pten(lox/lox)Csf3r-/- GEMMs. Polymorphonuclear neu-
trophils (PMNs), which play anti-tumor roles in endome-
trioid cancer progression, are depleted in these animals.
Interestingly, Prg(cre/+)Pten(lox/lox)Csf3r-/- GEMMs
had a serous subtype classification, which could be ex-
plained by differences in PMN involvement in endome-
trioid versus serous uterine tumor development that are
reflected in the respective transcriptomes of the TCGA
UCEC training data. We note that the tumor cells were
sorted prior to RNA-seq, and thus, the shift in subtype
classification is not due to contamination of GEMMs with
non-tumor components. In short, this analysis supports
the argument that tumor-cell extrinsic factors; in this case,
a reduction in anti-tumor PMNs can shift the transcrip-
tome of a GEMM so that it more closely resembles a ser-
ous rather than endometrioid subtype.
The LUSC GEMMs that we analyzed were Lkb1fl/fl

and they either overexpressed of Sox2 (via two distinct
mechanisms) or were also Ptenfl/fl [36]. We note that the
eight lenti-Sox2-Cre-infected, Lkb1fl/fl and Rosa26LSL-
Sox2-IRES-GFP, and Lkb1fl/fl samples that classified as
“Unknown” had LUSC CCN scores only modestly lower
than the decision threshold (Fig. 6d) (mean CCN score
= 0.217). Thirteen out of the 17 of the Sox2 GEMMs
classified as the secretory subtype of LUSC. The
consistency is not surprising given both models overex-
press Sox2 and lose Lkb1. On the other hand, the
Lkb1fl/fl and Ptenfl/fl GEMMs had substantially lower
general LUSC CCN scores, and our subtype classifica-
tion indicated that this GEMM was mostly classified as
“Unknown,” in contrast to prior reports suggesting that
it is most similar to a basal subtype [89]. None of the
three LUSC GEMMs has strong classical CCN scores.
Most of the LUAD GEMMs, which were generated using
various combinations of activating Kras mutation, loss of
Trp53, and loss of Smarca4L [30, 36, 38], were correctly
classified (Fig. 6e). Those that were not classified have
modestly lower CCN scores than the decision threshold

(mean CCN score = 0.214). There were no substantial
differences in general or subtype classification across
driver genotypes. Although the sub-type of all LUAD
GEMMs was “Unknown,” the subtypes tended to have a
mixture of high CCN proximal proliferation, proximal
inflammation, and TRU scores. Taken together, this ana-
lysis suggests that there is a degree of similarity and per-
haps plasticity between the primitive and secretory (but
not basal or classical) subtypes of LUSC. On the other
hand, while the LUAD GEMMs classify strongly as
LUAD, they do not have a strong particular subtype
classification—a result that does not vary by genotype.

Evaluation of tumoroids
Lastly, we used CCN to assess a relatively novel cancer
model: tumoroids. We downloaded and assessed 131
distinct tumoroid expression profiles spanning 13 cancer
categories from the NCI patient-derived models reposi-
tory (PDMR) [39] and from three individual studies [40–
42] (Fig. 7a, Additional file 14: Table S13). We note that
several categories have three or fewer samples (BRCA,
CESC, KIRP, OV, BLCA (PDMR), and LIHC). Among
the cancer categories represented by more than three
samples, only LUSC and PAAD have fewer than 50%
classified as their annotated label (Fig. 7b). In contrast to
GBM CCLs, all three induced pluripotent stem cell-
derived GBM tumoroids [42] were classified as GBM
with high CCN scores (mean = 0.53). To further
characterize the tumoroids, we performed subtype classi-
fication on them (Additional file 15: Table S14). UCEC
tumoroids from PDMR contain a wide range of subtypes
with two endometrioid, two serous, and one mixed type
(Fig. 7c). On the other hand, LUSC tumoroids appear to
be predominantly of classical subtypes with one tumor-
oid classified as a mix between classical and primitive
(Fig. 7d). Lastly, similar to the CCL and PDX counter-
parts, LUAD tumoroids are classified as proximal in-
flammatory and proximal proliferation with no
tumoroids classified as TRU subtype (Fig. 7e).

Comparison of CCLs, PDXs, GEMMs, and tumoroids
Finally, we sought to estimate the comparative transcrip-
tional fidelity of the four cancer model modalities. We
compared the general CCN scores of each model on a per
tumor type basis (Fig. 8). In the case of GEMMs, we used
the mean classification score of all samples with shared
genotypes. We also used the mean classification of

(See figure on previous page.)
Fig. 6 Evaluation of genetically engineered mouse models. a General classification heatmap of GEMMs. Column annotations represent annotated
cancer type of the GEMMs, and row names represent cancer categories. b Proportions of classification categories in GEMMs across cancer types
are visualized in the bar plot and ordered from the cancer type with the highest proportion of correct and mixed correct GEMMs to the lowest.
Subtype classification heatmap of c UCEC GEMMs, d LUSC GEMMs, and e LUAD GEMMs. Only samples with general CCN scores > 0.1 in their
nominal tumor type are displayed

Peng et al. Genome Medicine           (2021) 13:73 Page 18 of 27



technical replicates found in LIHC tumoroids [40]. We
evaluated models based on both the maximum CCN
score, as this represents the potential for a model class,
and the median CCN score, as this indicates the current
overall transcriptional fidelity of a model class. PDXs
achieved the highest CCN scores in three (UCEC, PAAD,
LUAD) out of the five cancer categories in which all four

modalities were available (Fig. 8), despite having low me-
dian CCN scores. Notably, PDXs have a median CCN
score above the 0.25 threshold in PAAD while none of the
other three modalities have any samples above the thresh-
old. In LIHC, the highest CCN score for PDX (0.9) is only
slightly lower than the highest CCN score for tumoroid
(0.91). This suggests that certain individual PDXs most

Fig. 7 Evaluation of tumoroid models. a General classification heatmap of tumoroids. Column annotations represent annotated cancer type of
the tumoroids, and row names represent cancer categories. b Proportions of classification categories in tumoroids across cancer types are
visualized in the bar plot and ordered from the cancer type with the highest proportion of correct and mixed correct tumoroids to the lowest.
Subtype classification heatmap of c UCEC tumoroids, d LUSC tumoroids, and e LUAD tumoroids. Only samples with general CCN scores > 0.1 in
their nominal tumor type are displayed
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closely mimic the transcriptional state of native patient tu-
mors despite a portion of the PDXs having low CCN
scores. Similarly, while the majority of the CCLs have low
CCN scores, several lines achieve high transcriptional fi-
delity in LUSC, LUAD, and LIHC (Fig. 8). Collectively,
GEMMs and tumoroids had the highest median CCN
scores in four of the five model classes (LUSC and LUAD
for GEMMs and UCEC and LIHC for tumoroids). Not-
ably, both of the LIHC tumoroids achieved CCN scores
on par with patient tumors (Fig. 8). In brief, this analysis
indicates that PDXs and CCLs are heterogenous in terms
of transcriptional fidelity, with a portion of the models
highly mimicking native tumors and the majority of the
models having low transcriptional fidelity (with the excep-
tion of PAAD for PDXs). On the other hand, GEMMs and
tumoroids displayed a consistently high fidelity across dif-
ferent models.
Because the CCN score is based on a moderate

number of gene features (i.e. 1979 gene pairs consist-
ing of 1689 unique genes) relative to the total num-
ber of protein-coding genes in the genome, it is
possible that a cancer model with a high CCN score
might not have a high global similarity to a naturally
occurring tumor. Therefore, we also calculated the
gene regulatory network (GRN) status, a metric of the
extent to which tumor type-specific gene regulatory
network is established [54], for all models (Additional
file 6: Fig. S5). We observed a high level of correl-
ation between the two similarity metrics, which sug-
gests that although CCN classifies on a selected set of
genes, its scores are highly correlated with a more
global assessment of transcriptional similarity.
We also sought to compare model modalities in terms

of the diversity of subtypes that they represent

(Additional file 6: Fig. S6). As a reference, we also in-
cluded in this analysis the overall subtype incidence, as
approximated by incidence in TCGA. Replicates in
GEMMs and tumoroids were averaged into one classifi-
cation profile. In models of UCEC, there is a notable dif-
ference in endometroid incidence, and the proportion of
models classified as endometroid, with only PDX and
tumoroids having any representatives (Additional file 6:
Fig. S6). All of the CCL, GEMM, and tumoroid models
of PAAD have an unknown subtype classification and
no correct general classification. However, the majority
of PDXs are subtyped as either a mixture of basal and
classical, or classical alone. LUAD have proximal inflam-
mation and proximal proliferation subtypes modeled by
CCLs, PDXs, and tumoroids (Additional file 6: Fig. S6).
Likewise, LUSC have classical and primitive subtypes
modeled by CCLs, PDXs, and tumoroids, and whereas
the secretory subtype is modeled by GEMMs exclusively
and the basal subtype is modeled by PDXs exclusively
(Additional file 6: Fig. S6). Taken together, these results
demonstrate the need to carefully select different model
systems to more suitably model certain cancer subtypes.

Discussion
A major goal in the field of cancer biology is to develop
models that mimic naturally occurring tumors with
enough fidelity to enable therapeutic discoveries. How-
ever, methods to readily measure the extent to which
cancer models resemble or diverge from native tumors
are lacking. This is especially problematic now because
there are many existing models from which to choose,
and it has become easier to generate new models. Here,
we present CancerCellNet (CCN), a computational tool
that measures the similarity of cancer models to 22

Fig. 8 Comparison of CCLs, PDXs, GEMMs, and tumoroids. Box-and-whiskers plot comparing general CCN scores across CCLs, GEMMs, PDXs, and
tumoroids in five general tumor types (UCEC, PAAD, LUSC, LUAD, LIHC)
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naturally occurring tumor types and 36 subtypes. While
the similarity of CCLs to patient tumors has already
been explored in previous work, our tool introduces the
capability to assess the transcriptional fidelity of PDXs,
GEMMs, and tumoroids. Because CCN is platform- and
species-agnostic, it represents a consistent platform to
compare models across modalities including CCLs,
PDXs, GEMMs, and tumoroids. Here, we applied CCN
to 657 cancer cell lines, 415 patient-derived xenografts,
26 distinct genetically engineered mouse models, and
131 tumoroids. Several insights emerged from our com-
putational analyses that have implications for the field of
cancer biology.
First, PDXs have the greatest potential to achieve

transcriptional fidelity with three out of five general
tumor types for which data from all modalities was
available, as indicated by the high scores of individual
PDXs. Notably, PDXs are the only modality with sam-
ples classified as PAAD. At the same time, the me-
dian CCN scores of PDXs were lower than that of
GEMMs and tumoroids in the other four tumor
types. It is unclear what causes such a wide range of
CCN scores within PDXs. We suspect that some
PDXs might have undergone selective pressures in
the host that distort the progression of genomic alter-
ations away from what is observed in natural tumor
[90]. Future work to understand this heterogeneity is
important so as to yield consistently high fidelity
PDXs, and to identify intrinsic and host-specific fac-
tors that so powerfully shape the PDX transcriptome.
Second, in general, GEMMs and tumoroids have

higher median CCN scores than those of PDXs and
CCLs. This is also consistent with that fact that
GEMMs are typically derived by recapitulating well-
defined driver mutations of natural tumors, and thus,
this observation corroborates the importance of gen-
etics in the etiology of cancer [91]. Moreover, in con-
trast to most PDXs, GEMMs are typically generated
in immune replete hosts. Therefore, the higher overall
fidelity of GEMMs may also be a result of the influ-
ence of a native immune system on GEMM tumors
[92]. The high median CCN scores of tumoroids can
be attributed to several factors including the increased
mechanical stimuli and cell-cell interactions that
come from 3D self-organizing cultures [93, 94].
Third, we have found that none of the samples that

we evaluated here are transcriptionally adequate
models of ESCA. This may be due to an inherent la-
bility of the ESCA transcriptome that is often pre-
ceded by a metaplasia that has obscured determining
its cell type(s) of origin [95]. Therefore, this tumor
type requires further attention to derive new models.
Fourth, we found that in several tumor types, GEMMs

tend to reflect mixtures of subtypes rather than

conforming strongly to single subtypes. The reasons for
this are not clear but it is possible that in the cases that
we examined the histologically defined subtypes have a
degree of plasticity that is exacerbated in the murine
host environment.
Lastly, we recognize that many CCLs are not classified

as their annotated labels. While we have suggested that
the lack of immune component is not a major con-
founder for CCN, we suspect that the CCLs could
undergo genetic divergence due to a high number of
passages, chemotherapy before biopsy, culture condition,
and genetic instability [96–99], which could all be fac-
tors that drive CCLs away from their labeled tumors.
Furthermore, a recent study has proposed several con-
tributors to cell line mislabeling such as inaccurate as-
signment based on unclear anatomical features or
mismatch during sampling and adaption steps [16].
Currently, there are several limitations to our CCN

tool and caveats to our analyses, which indicate areas for
future work and improvement. First, CCN is based on
transcriptomic data but other molecular readouts of
tumor state, such as profiles of the proteome [100], epi-
genome [101], non-coding RNA-ome [101], and genome
[91] would be equally, if not more important, to mimic
in a model system. Therefore, it is possible that some
models reflect tumor behavior well, and because this be-
havior is not well predicted by transcriptome alone,
these models have lower CCN scores. To both measure
the extent that such situations exist, and to correct for
them, we plan in the future to incorporate other omic
data into CCN so as to make more accurate and inte-
grated model evaluation possible. As a first step in this
direction, we plan to incorporate DNA methylation and
genomic sequencing data as additional features for our
random forest classifier as this data is becoming more
readily available for both training and cancer models.
We expect that this will allow us to both refine our
tumor subtype categories and it will enable more accur-
ate predictions of how models respond to perturbations
such as drug treatment.
A second limitation is that in the cross-species ana-

lysis, CCN implicitly assumes that orthologs are func-
tionally equivalent. The extent to which they are not
functionally equivalent determines how confounded the
CCN results will be. This possibility seems to be of lim-
ited consequence based on the high performance of the
normal tissue cross-species classifier and based on the
fact that GEMMs have the highest median CCN scores
(in addition to tumoroids).
A third caveat to our analysis is that there were many

fewer distinct GEMMs and tumoroids than CCLs and
PDXs. As more transcriptional profiles for GEMMs and
tumoroids emerge, this comparative analysis should be
revisited to assess the generality of our results.
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A fourth caveat is that although the gene pairs se-
lected through CCN provide predictive capabilities in
the random forest classifier, they do not necessarily
represent marker genes for individual cancer types.
Other methods that do not entail gene pair selection
performed well in our benchmarking analysis, and
thus, these approaches may yield more readily deriv-
able sets of marker genes. We note that a definitive
comparison of tumor model assessment tools awaits a
more comprehensive and experimentally backed
study.
Finally, the TCGA training data is made up of

RNA-seq from bulk tumor samples, which necessar-
ily includes non-tumor cells, whereas the CCLs are
by definition cell lines of tumor origin. Therefore,
CCLs theoretically could have artificially low CCN
scores due to the presence of non-tumor cells in the
training data. This problem appears to be limited as
we found no correlation between tumor purity and
CCN score in the CCLE samples. However, this
problem is related to the question of intra-tumor
heterogeneity. We demonstrated the feasibility of
using CCN and single-cell RNA-seq data to refine
the evaluation of cancer cell lines contingent upon
availability of scRNA-seq training data. As more
training single-cell RNA-seq data accrues, CCN
would be able to not only evaluate models on per
cell type basis, but also based on cellular
composition.

Conclusions
In summary, we have assessed the transcriptional
similarities of four types of cancer models (CCLs,
PDXs, GEMMs, and tumoroids) to naturally occurring
human tumors. We have made the results of our ana-
lyses available online so that researchers can easily
explore the performance of selected models or iden-
tify the best models for any of the 22 general tumor
types and the 36 subtypes presented here. To ensure
that CCN is widely available, we have developed a
free web application, which performs CCN analysis
on user-uploaded data and allows for direct compari-
son of their data to the cancer models evaluated here.
We have also made the CCN code freely available
under an Open Source license and as an easily install-
able R package, and we are actively supporting its
further development. Included in the web application
are instructions for training CCN and reproducing
our analysis. The documentation describes how to
analyze models and compare the results to the panel
of models that we evaluated here, thereby allowing re-
searchers to immediately compare their models to the
broader field in a comprehensive and standard
fashion.
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