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SUMMARY
Spatial barcoding technologies have the potential to reveal histological details of transcriptomic profiles;
however, they are currently limited by their low resolution. Here, we report Seq-Scope, a spatial barcoding
technology with a resolution comparable to an optical microscope. Seq-Scope is based on a solid-phase
amplification of randomly barcoded single-molecule oligonucleotides using an Illumina sequencing platform.
The resulting clusters annotated with spatial coordinates are processed to expose RNA-capture moiety.
These RNA-capturing barcoded clusters define the pixels of Seq-Scope that are �0.5–0.8 mm apart from
each other. From tissue sections, Seq-Scope visualizes spatial transcriptome heterogeneity at multiple his-
tological scales, including tissue zonation according to the portal-central (liver), crypt-surface (colon) and
inflammation-fibrosis (injured liver) axes, cellular components including single-cell types and subtypes,
and subcellular architectures of nucleus and cytoplasm. Seq-Scope is quick, straightforward, precise, and
easy-to-implement and makes spatial single-cell analysis accessible to a wide group of biomedical
researchers.
INTRODUCTION

The development of light and electron microscopes profoundly

contributed to the development of modern histology (Mazzarini

et al., 2021). Protein and mRNA detection techniques, such as

immunohistochemistry and RNA in situ hybridization, further al-

lowed for examining specific biomolecules in histological slides

(Callea et al., 1992). These technological advances strengthened

our understanding of various pathophysiological processes and

enabled the development of molecular diagnostic methods for

various diseases.

Standard immunohistochemistry and RNA in situ hybridization

can examine only one or a handful of target molecular species at

a time; therefore, the amount of information obtained from a sin-

gle experimental session is limited. To overcome this, emerging

spatial transcriptomics (ST) techniques aim to examine all genes

expressed from the genome from a single histological slide (Asp

et al., 2020). There are three major methodologies to experimen-

tally implement ST. First, the sequential in situ hybridization

method, often combined with combinatorial multiplexing, can in-

crease the number of RNA species that can be detected from a

single histological section. Second, in situ sequencing can iden-

tify RNA sequences from the tissue through fluorescence-based
direct sequencing. Finally, spatial barcoding methods associate

RNA sequences and their spatial locations by capturing tissue

RNA using a spatially barcoded oligonucleotide array.

Among these three major methodologies, the spatial barcod-

ing method is the most straightforward, comprehensive, widely

used, and commercially available method easily accessible by

many laboratories (Asp et al., 2020). Spatial barcoding is

currently achieved by microspotting (Ståhl et al., 2016), bar-

coded bead arrays (Rodriques et al., 2019; Stickels et al.,

2021; Vickovic et al., 2019), or a fabricated microfluidic channel

(Liu et al., 2020). These methods, however, have an intrinsic lim-

itation due to their low-resolution specifications. For instance,

VISIUM from 10X Genomics has a center-to-center resolution

of 100 mm (Bergenstråhle et al., 2020), which is worse than that

of the naked eye (�40 mm). More recent technologies, such as

Slide-Seq, HDST, and DBiT-Seq, improved the resolution (Liu

et al., 2020; Rodriques et al., 2019; Stickels et al., 2021; Vickovic

et al., 2019); however, their resolutions are still far coarser than

an optical microscope that has submicrometer resolution.

Here, we describe a technology for achieving submicrometer

resolution spatial barcoding, designated as Seq-Scope. Our

technique is based on the solid-phase amplification of a random

barcode molecule, conveniently achieved by the Illumina
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Figure 1. Seq-Scope overview

(A) Schematic representation of the HDMI-oligo library structure for 1st-Seq. P5/P7, PCR adapters; TR1, TruSeq Read 1; HR1, HDMI Read 1.

(B) Solid-phase amplification of different HDMI-oligo molecules on the flow cell surface.

(C and D) Illumina sequencing by synthesis (SBS) determines the HDMI sequence and XY coordinates of each cluster (C). Then, HDMI oligonucleotide clusters are

modified to expose oligo-dT, the RNA-capture domain (D).

(E–I) HDMI-array captures RNA released from the overlying frozen section (E). Then, cDNA footprint is generated by reverse transcription (F). After that, secondary

strand is synthesized using random priming method (G). Finally, adaptor PCR (H) generates the sequencing library for 2nd-Seq (I), where paired-end sequencing

using TR1 and TR2 reveals cDNA sequence and its matching HDMI barcode. TR2, TruSeq Read 2.

(J) HDMI-array contains up to 150 HDMI clusters in 100 mm2 area.

See also Figure S1.
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sequencing platform (Bentley et al., 2008). Seq-Scope has a

center-to-center resolution of 0.5–0.8 mm (�0.6 mm on average),

far superior to previous technologies and comparable to an op-

tical microscope. Seq-Scope also has an excellent transcrip-

tome capture output (up to 23–27 unique molecular identifiers

[UMIs]/mm2 on average), which is outstanding among the avail-

able ST methodologies. When aggregated into single-cell areas,

the transcriptome output of Seq-Scope (�4,700 UMIs/cell on

average) is even comparable to conventional single-cell RNA

sequencing (scRNA-seq). Using Seq-Scope, we obtained tran-

scriptome images that clearly visualize microscopic cellular

and subcellular structures of the liver and colon, which were

impossible to obtain through formerly existing methods.

RESULTS

Seq-Scope technology overview
The Seq-Scope experiments are divided into two rounds of

sequencing steps: 1st-Seq and 2nd-Seq (Figure 1). 1st-Seq gen-

erates a physical array of spatially barcoded RNA-capture mol-

ecules and a spatial map of barcodes where each barcoded

sequence is associated with a spatial coordinate in the physical

array. 2nd-Seq captures mRNAs released from the tissue placed

on the physical array from the 1st-Seq and sequences the

captured molecules containing both cDNA and spatial barcode

information.
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1st-Seq of Seq-Scope starts with the solid-phase amplification

of a single-stranded synthetic oligonucleotide library using an

Illumina sequencing platform (MiSeq in the current study; Fig-

ure 1A). The oligonucleotide ‘‘seed’’ molecule contains the

PCR/read adaptor sequences, the restriction enzyme-cleavable

RNA-capture domain (oligo-dT), and the high-definition map

coordinate identifier (HDMI), a spatial barcode composed of a

20–32 random nucleotide sequence. The library is amplified on

a lawn surface coated with PCR adapters (Figure 1B), generating

a number of clusters, each of which is derived from a single

‘‘seed’’ molecule. Each cluster has thousands of oligonucleo-

tides that are identical clones of the initial oligonucleotide

‘‘seed’’ (Bentley et al., 2008) (Figure 1B). The HDMI sequence

and spatial coordinate of each cluster are determined through

a sequencing-by-synthesis (SBS) procedure using the real-

time analysis (RTA) software, without requiring any in-house

custom image analysis (Figures 1C and S1A). After SBS, the

oligonucleotides in each cluster are processed to expose the

nucleotide-capture domain (Figures 1D and S1A), producing

anHDMI-encoded RNA-capturing array (HDMI-array; Figure 1E),

the physical array produced by 1st-Seq of Seq-Scope.

2nd-Seq of Seq-Scope begins with overlaying the tissue slice

onto the HDMI-array (Figure 1E). The mRNAs from the tissue

are used as a template to generate cDNA footprints on the

HDMI-barcoded RNA capture molecule (Figures 1F and S1B).

Then, the secondary strand is synthesized on the cDNA footprint



Figure 2. Seq-Scope has an outstanding transcriptome capture performance

(A) Representative images of HDMI clusters visualizing ‘‘A’’ intensity at the 1st (upper) and 33rd (lower) cycles of the 1st-Seq SBS, where 33% and >97%of clusters

exhibit fluorescence, respectively. Yellow squares in the left panels are magnified in the right panels.

(B) H&E staining and its corresponding Cy3-dUTP labeling fluorescence images from fragmented liver section. Dotted lines mark tissue boundaries. Box insets

highlight single-cell-like patterns.

(C) H&E staining and its corresponding HDMI discovery plot drawn from the analysis of 1st-Seq and 2nd-Seq outputs. Brighter color in the HDMI discovery plot

indicates that more HDMI was found from 2nd-Seq in the corresponding pixel area.

(D–I) Performance comparison of different ST solutions. The values were derived from each pixel (D and F–I) or gridded area (E). nUMI, number of UMI; nGene,

number of gene features; SeqScope(L) and SeqScope(C), liver and colon Seq-Scope data.

See also Figure S2.

ll

Please cite this article in press as: Cho et al., Microscopic examination of spatial transcriptome using Seq-Scope, Cell (2021), https://doi.org/
10.1016/j.cell.2021.05.010

Resource
using an adaptor-tagged random primer (Figures 1G and S1B).

Because each cDNA footprint is paired with a single random

primer after washing, the random priming sequence is used as

a UMI (Figure S1B). The secondary strand, which is a chimeric

molecule of HDMI and cDNA sequences, is then collected and

prepared as a library through PCR (Figures 1H and S1B). The

paired-end sequencing of this library reveals the cDNA footprint

sequence, as well as its corresponding HDMI sequence (Figures

1I and S1B).

For each HDMI sequence, 1st-Seq provides spatial coordinate

information whereas 2nd-Seq provides captured cDNA informa-

tion. Correspondingly, the spatial gene expression matrix is con-

structed by combining the 1st-Seq and 2nd-Seq data, which is

used for various analyses (Figures S1C–S1E).

HDMI-array captures spatial RNA footprint of tissues
Through a series of titration experiments, we produced the

HDMI-array with a sequenced cluster density of up to 1.5 million

clusters per mm2 (Figure 2A, S2A, and S2B), which is sufficient to

perform single-cell and subcellular analysis of the spatial tran-

scriptome (Figure 1J).

The RNA-capturing capability of the HDMI-array was first eval-

uated by performing aCy3-dUTP-mediated cDNA labeling assay
using a fragmented frozen liver section. The HDMI-array suc-

cessfully generated a spatial cDNA footprint that preserved the

overlying tissue’s gross shape (Figure 2B). The labeling assay

also revealed microscopic details of cDNA footprints that

resemble a single-cell morphology (Figure 2B, insets), which

has a fluorescence texture similar to the underlying clusters (Fig-

ures 2A and S2A).

Then, we performed the complete Seq-Scope procedure on

two representative gastrointestinal tissues, the liver and colon.

In each 1st-Seq experiment, the HDMI-array was produced in

1 mm-wide circular areas of the MiSeq flow cell, also known as

‘‘tiles’’ (Figure S2C). The tissue sections were overlaid onto the

HDMI arrays, examined by H&E staining, and subjected to 2nd-

Seq. Analysis of the 1st-Seq and 2nd-Seq data (Figure S1C)

demonstrated that the RNA footprints were discovered mostly

from tissue-overlaid regions (Figures 2C, S2D, and S2E), con-

firming that Seq-Scope can indeed capture and analyze the

spatial transcriptome from the tissues.

The Seq-Scope analysis was robust against PCR and

sequencing errors; >99% of all spatial assignments were esti-

mated to be accurate, as detailed in the STAR Methods (Figures

S2F–S2H). The small number of transcripts discovered outside

of the tissue-overlaid regions had a transcriptome profile similar
Cell 184, 1–14, June 24, 2021 3



Figure 3. Seq-Scope visualizes subcellular spatial transcriptome

(A) Schematic diagram depicting the distribution of different RNA species in subcellular compartments.

(B–D) Spatial plot of all unspliced and spliced transcripts, as well as nuclear-targeted (B) and mitochondria-encoded (C) transcripts. Pearson correlations (r)

between these transcript intensities were presented in a heatmap (D).

(E) Images displaying unspliced RNA discovery, H&E histology, and histology-based cell segmentation boundaries. Inset in the first panel is magnified in right

panels.

(F) Spatial plot of unspliced and spliced transcripts in three independent subsets of genes (gene subset 1–3). Pearson correlations (r) were presented as a

heatmap. S1–3, spliced 1–3; U1–3, unspliced 1–3.

(G) Identification of transcriptomic nuclear centers (yellow crosses) through local maxima detection.

(H) Identification of nuclear-enriched RNA species. Top 10 nuclear-enriched RNAs are shown.

See also Figure S3.
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to the tissue-covered area (r = 0.9833); therefore, these tran-

scripts are likely derived from tissue debris or ambient RNAs

released from the tissue.
Seq-Scope captures transcriptome information with
high efficiency
Compared to previous ST solutions, Seq-Scope offers a dra-

matic improvement in resolution (Figure 2D) and pixel density

(Figure 2E); center-to-center distances between HDMI pixels

were measured to be 0.633 ± 0.140 mm (liver) and 0.630 ±

0.132 mm (colon) (mean ± SD) (Figure 2D). Although each

HDMI-barcoded cluster covers an extremely tiny area

(<1 mm2), single HDMI pixel in tissue-covered region was able

to capture 6.70 ± 5.11 (liver) and 23.4 ± 17.4 (colon) UMIs

(mean ± SD) (Figure 2F). The number of gene features identified

per HDMI pixel was 5.88 ± 4.22 (liver) and 19.7 ± 14.3 (colon)

(mean ± SD) (Figure 2G). Per-pixel counts of UMIs and genes

in Seq-Scope were larger than HDST but were smaller than

other technologies (Figures 2F and 2G). However, after normal-

ization using the pixel density, Seq-Scope showed the best

transcriptome capture performance per area among the

datasets we examined (Figures 2H and 2I; colon dataset).

Considering that the current data are estimated to cover only
4 Cell 184, 1–14, June 24, 2021
�60% (liver) and �36% (colon) of the total library size (Fig-

ure S2I), the maximum possible Seq-Scope capture efficiency

should be even higher than the currently presented data.

Therefore, Seq-Scope provides an outstanding mRNA capture

output, in addition to providing an unmatched spatial resolution

output.
Seq-Scope reveals nuclear-cytoplasmic transcriptome
architecture from tissue sections
mRNA is transcribed and poly-A modified in the nucleus, and

transported to the cytoplasm after splicing (Figure 3A). Several

RNAs in the mouse liver, such as Malat1, Neat1, and Mlxipl,

exhibit strong nuclear localization (Bahar Halpern et al., 2015).

On the other hand, the cytoplasmic mitochondria contain many

mitochondria-encoded RNAs (mtRNA) (Figure 3A).

We spatially plotted all spliced and unspliced transcripts

discovered from Seq-Scope. Intriguingly, unspliced transcript

expression was restricted in tiny circles with a diameter of

�10 mm (Figures 3B and S3A), which is about the size of hepato-

cellular nuclei (Baratta et al., 2009). Spliced mRNAs were rela-

tively scarce in the unspliced area, whereas nuclear-targeted

RNAs were more abundant in the unspliced area (Figure 3B).

Mt-RNAs were mostly in the spliced area (Figures 3C and
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S3B). These observations were substantiated by correlation

analysis of the single-cell images (Figures 3D and S3C).

These results suggest that spliced and unspliced transcripts

are useful to determine the nuclear-cytoplasmic structure from

the Seq-Scope dataset. Indeed, when overlaid with H&E staining

images, the unspliced RNA-enriched region generally agreed

with the nuclear position (Figure 3E; note that some hepatocytes

are known to be multinucleate) (Donne et al., 2020). However, in

some hepatocytes, the unspliced RNA-enriched regions were

not observed (Figure 3E), which can be explained by the absence

of the cell’s nucleus in the tissue slice (Figure S3D), the inade-

quate positioning of the nucleus for RNA capture (Figure S3E),

or the intrinsic variations in the rates of transcription, splicing,

and nuclear export (Figure S3F).

To further test the robustness of these observations, we

randomly divided all genes into three independent subsets and

examined the expressions of spliced and unspliced mRNAs

from each subset. All three datasets similarly visualized a nu-

clear-cytoplasmic structure with a strong correlation (Figures

3F and S3G).

Finally, we identified nuclear centers by using unspliced tran-

scripts (Figure 3G). Then, we searched for genes whose tran-

scripts were enriched within 5 mm from the nuclear centers.

Consistent with previous cell fractionation and RNA in situ hy-

bridization studies (Bahar Halpern et al., 2015) and our observa-

tions described above,Malat1, Neat1, andMlxiplwere identified

as the top 3 genes enriched in the nuclear area (Figure 3H). These

results demonstrate that Seq-Scope can perform subcellular

transcriptome studies.

Seq-Scope performs spatial single-cell analysis of
hepatocytes
Using an image segmentation method (Sage and Unser, 2003),

single hepatocellular areas were identified from the H&E image

(Figures 3E and 4A). The single hepatocellular transcriptome

from the segmented Seq-Scope data showed a substantial num-

ber of UMIs (4,294, median; 4,734 ± 2,480, mean ± SD) and

genes (1,617, median; 1,673 ± 631.7, mean ± SD), which are

comparable to the recent single hepatocyte transcriptome data-

sets obtained from MARS-Seq (Halpern et al., 2017) and Drop-

Seq (Park et al., 2021) (Figure 4B). The transcriptome content

of Seq-Scope was similar to the results from the MARS-Seq,

Drop-Seq, and Bulk RNA-seq analyses of the normal liver (Fig-

ures S4A–S4E).

Cell type mapping analysis of the segmented single hepato-

cyte dataset revealed the spatial structure of hepatocellular

zonation, identifying both pericentral (PC) and periportal (PP)

profiles (Figure S4F), which were found in their corresponding

spatial locations (Figure S4G). PP- and PC-specific genes iso-

lated from Seq-Scope were also found in MARS-Seq and

Drop-Seq data (Figure S4H; Table S1). The top 50 PC/PP genes

from Drop-Seq andMARS-Seq were sufficient to classify PC/PP

cells in the Seq-Scope dataset (Figure S4I; Table S1). Therefore,

Seq-Scope single-cell analysis agreed with the former scRNA-

seq results and revealed every single cell’s actual spatial

locations.

Amore detailed analysis of Seq-Scope data identified multiple

transcriptome layers ordered across the portal-central zonation
axis (Figures 4C, 4D, and S4J). Continuous mapping, instead of

discrete clustering, also visualized a similar zonation pattern

(Figure S4K). Many of the cluster marker genes showed a spec-

trum of diverse zonation patterns between the PC and PP pro-

files (Figure 4E). These gene expression patterns are consistent

with the previous RNA in situ hybridization (Aizarani et al., 2019;

Halpern et al., 2017) and immunostaining results (Park et al.,

2021). However, previous studies using original ST (Hildebrandt

et al., 2021) or Slide-Seq (Rodriques et al., 2019) were not able to

uncover this level of detail (Figures S4L and S4M), possibly due

to the limitations in resolution (Figures 2D and 2E) and RNA cap-

ture efficiency (Figures S4N and S4O).

Seq-Scope detects non-parenchymal cell transcriptome
from liver section
Although hepatocytes are the major cellular component in the

liver, non-parenchymal cells (NPC) such as macrophages (M4;

blue), hepatic stellate cells (HSC; dark green), endothelial cells

(ENDO; orange), and red blood cells (RBC; red) can be found

in a small portion of the histological area (Figure 4F) (Ben-Moshe

and Itzkovitz, 2019). Due to their small sizes, these cells were not

easily isolated through H&E-based image segmentation assays;

H&E-based segmentation assay failed to reveal the NPC tran-

scriptome except around the portal vein area (gray clusters in

Figures 4C and 4D), where RBCs and M4s often accumulate in

large quantities (Dou et al., 2020).

Therefore, alternatively, we segmented the Seq-Scope data-

set with a uniform grid consisting of 10 mm-sided squares (Fig-

ures S4P–S4S). Cell-type mapping analysis of the gridded

Seq-Scope dataset identified the grids that correspond to these

NPC cell types (Figures 4G and S4T), based on the expression of

cell-type-specific markers (Figures S4T–S4V; Table S2).

Althoughmost of the histological space was occupied by the he-

patocellular area (Hep_PP and Hep_PC), the small and frag-

mented spaces scattered throughout the section represented

the NPC area (Figure 4H). The locations of the M4 and ENDO

grids (Figure 4I, first and second panels) were consistent with

the spatial location of their corresponding cell-type-specific

marker expression (Figure 4I, arrows in the third panel) and the

histologically identified M4 and sinusoid areas (Figure 4I, arrows

in the fourth panel) that are located around the segmentation

boundaries (Figure 4I, arrows in the fifth panel). Therefore, histol-

ogy-guided cell segmentation analysis and histology-agnostic

square gridding analysis complemented each other in identifying

different cell types.

Seq-Scope reveals transcriptomic details of
histopathology associated with liver injury
The data presented above confirm that Seq-Scope can reveal

the transcriptome heterogeneity and spatial complexity of the

normal liver at various scales. But could Seq-Scope also reveal

the pathological details of transcriptome dysregulation in

diseased liver? To address this, we utilized our recently devel-

oped mouse model of early-onset liver failure that was provoked

by excessive mTORC1 signaling (Cho et al., 2019). This model

(Tsc1Dhep/Depdc5Dhepmice or TDmice) exhibits widespread he-

patocellular oxidative stress, leading to localized liver damage,

inflammation, and fibrotic responses (Cho et al., 2019).
Cell 184, 1–14, June 24, 2021 5



Figure 4. Seq-Scope performs spatial single-cell analysis in normal mouse liver
(A–D) Spatial single-cell analysis of Seq-Scope data through histology-guided hepatocyte segmentation.

(A) Single hepatocyte segmentation based on H&E staining.

(B) Comparison of Seq-Scope single-cell output with those obtained from MARS-Seq and Drop-Seq.

(C) Cell-type clustering revealed multiple layers of hepatocellular zonation (Hep_PC1-3 and Hep_PP1-3), as well as a small number of non-parenchymal (NPC)

and injured (Hep_injured) transcriptome phenotypes. PC, pericentral; PP, periportal. UMAP (upper) and heatmap (lower) analyses are shown.

(D) Spatial map of different hepatocellular clusters (left) was overlaid with H&E staining and cell segmentation images (right). PV, portal vein; CV, central vein.

(E) Spectrum of genes exhibiting different zone-specific expression patterns were examined by spatial plot analysis. PC-specific genes are depicted inwarm (red-

orange-yellow) colors, whereas PP-specific genes are depicted in cold (blue-purple) colors.

(F–I) Detection of NPC transcriptome through histology-agnostic segmentation with 10-mm grids.

(F) Schematic diagram depicting cellular components of normal liver and their representation in a tissue section.

(G and H) UMAP (G) and spatial plots (H) visualizing clusters of 10-mm grids representing indicated cell types.

(I) 10-mm grid-based M4 and ENDO mapping data (first and second panel) are compared with spatial plot data of cluster-specific markers (third panel), H&E

(fourth), and segmented H&E (fifth) data.

See also Figure S4 and Tables S1 and S2.

ll

6 Cell 184, 1–14, June 24, 2021

Please cite this article in press as: Cho et al., Microscopic examination of spatial transcriptome using Seq-Scope, Cell (2021), https://doi.org/
10.1016/j.cell.2021.05.010

Resource



Figure 5. Seq-Scope examines liver histopathology at microscopic and transcriptomic scales
Liver from a Tsc1Dhep/Depdc5Dhep (TD) mouse, which suffers severe liver injury and inflammation (Cho et al., 2019), was examined through Seq-Scope.

(A–C) UMAP (A) and spatial plots (C, left) visualize cell type clusters of 10-mmgrids. NPCs and injury-responding populations are highlighted in darker colors, and

their representative cell-type-specific marker genes are summarized in (B). H&E images (C, right) correspond to the boxed regions in (C, left). Yellow asterisk

marks the injury area.

(D–O) Transcriptomic structure of liver histopathology around dead hepatocytes (D–G) and fibrotic lesions (H–O).

(D, H, and M) Cell-type mapping analysis using sliding windows with 5-mm (left) and 2-mm (right) intervals.

(E, I, and N) Spatial plotting of indicated cell-type-specific genes in histological coordinate plane.

(F) Schematic arrangement of M4-Inflamed (green), M4-Kupffer (blue), Hep_Injured (red), and other cells (gray) around dead hepatocytes (black skull with yellow

asterisk).

(legend continued on next page)
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Wefirst examined the cellular components of the TD liver using

the gridded Seq-Scope dataset (Figures S5A–S5D). Most cell

types identified from the normal liver, such as PP/PC hepato-

cytes and NPCs, were also discovered from the TD liver (Figures

5A, S5E, and S5F; Table S3). Nuclear, cytoplasmic, and mito-

chondrial structures were also visualized through the spatial

plotting of unspliced, spliced, and mtRNA transcripts, respec-

tively (Figure S5G).

Former bulk RNA-seq results showed that the TD liver upregu-

lates oxidative stress signaling pathways (Cho et al., 2019).

Consistent with this, Seq-Scope identified that the TD liver ex-

pressed elevated levels of several antioxidant genes such as

Gpx3 and Sepp1. Interestingly, induction of these genes was

robust in PP hepatocytes, whereas the upregulation was not pro-

nounced in PC hepatocytes (Figure S5H). Therefore, the oxida-

tive stress response of the TD liver was PP-specific.

In the TD liver, we noticed that some NPC populations, such

as M4s and HSCs, were greatly increased and differentiated

into subpopulations. M4s were differentiated into homeostatic

and inflamed populations (M4-Kupffer and M4-Inflamed). M4-

Kupffer expressed Kupffer cell-specific markers such as Clec4f,

whereas M4-Inflamed expressed pro-inflammatory markers

such as Cd74 and MHC-II components (Figure 5B; Table S3).

Likewise, HSCs were also differentiated into normal and acti-

vated HSCs (HSC-N and HSC-A). HSC-A exhibited elevated

levels of fibrotic markers such as collagens and alpha-smooth

muscle actins (Acta2). In contrast, HSC-N expressed a different

set of extracellular proteins, such as Ecm1 and Dcn (Figure 5B;

Table S3), which were also expressed by HSCs residing in the

normal liver (Table S2).

The TD liver also exhibited emerging novel cell populations.

Hepatocytes exhibiting injury responses (Hep_Injured) ex-

pressed serum amyloid proteins (Figure S5F), a marker for liver

injury (Sack, 2020). Although the Hep_Injured population was

observed in a minor subset of normal liver hepatocytes (Figures

4C and 4D, black clusters, and S4T–S4V; Table S2), it became

much more prevalent in the TD liver dataset (Figures 5A and

S5E; Table S3). Hepatic progenitor cells (HPC) expressed a

unique set of genes such as Clu,Mmp7, Spp1, and Epcam (Fig-

ure 5B; Table S3). Among these genes, Spp1 (Strazzabosco

et al., 2014) and Epcam (Dollé et al., 2015) were formerly re-

ported to be expressed by injury-responding HPCs. Interest-

ingly, these populations of M4-Inflamed, HSC-A, Hep_Injured,

and HPC were concentrated around the injury and inflammation

sites, identified from the H&E histology images (Figure 5C;

dotted rectangles). Therefore, it is likely that these cell types

have an immediate pathophysiological connection with the liver

injury observed in the TD liver.

Through multiscale sliding windows analysis (see STAR

Methods), we generated a fine spatial map of different cell types

(Figure S5I). The results indicated that dead hepatocytes (aster-

isks in Figures 5C–5G) were surrounded by M4-Inflamed, which

were subsequently surrounded by Hep_Injured (Figure 5D). In
(G, K, L, andO) Confocal examination of liver sections stained with antibodies dete

(yellow asterisks) mark dead hepatocytes.

(J) Schematic arrangement of M4-Inflamed (green), M4-Kupffer (blue), HSC-A (r

See also Figure S5 and Table S3.
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contrast, M4-Kupffer wasmore uniformly distributed throughout

the liver section (Figure 5D). These observations are consistent

with the spatial plotting of cell-type-specific markers (Figure 5E)

and suggest the transcriptomic structure of liver injury histopa-

thology (Figure 5F).

To independently confirm these observations through

orthogonal technology, we performed immunofluorescence

confocal imaging of the cell-type-specific markers (Cd74,

Saa1/2, and Clec4f) (Figures 5B and S5J–S5O). The result re-

vealed a similar histopathological structure (Figure 5G)—

Cd74-positive cells surrounded the region where no live cells

were found (yellow asterisks), and Saa1/2 marked the hepato-

cellular injury response around the inflamed region. The Kupffer

cell marker Clec4f was not associated with the injury site and

was scattered throughout the space (Figure 5G). These results

support the initial observations from the Seq-Scope data (Fig-

ures 5D–5F).

TD liver also exhibits fibrotic responses. In the active fibrosis

area, M4-Inflamed and HSC-A were very tightly intermingled

with each other (Figures 5H and 5I). In contrast, M4-Kupffer

did not show specific spatial interaction and could be found in

both fibrotic and non-fibrotic areas (Figures 5H and 5I). These

observations (Figure 5J) were again reproduced with immuno-

fluorescence imaging; the tight co-localization between M4-

Inflamed and HSC-A (Figure 5K), as well as the non-specific

distribution of M4-Kupffer (Figure 5L), were confirmed by visual-

izing Cd74, Acta2, and Clec4f proteins.

In addition to HSC-A, HPCs also interacted with M4-Inflamed

in the Seq-Scope data (Figures 5M and 5N), consistent with their

known functional interactions (Viebahn et al., 2010). The interac-

tion betweenHPC andM4-Inflamedwas also observed in immu-

nofluorescence imaging (Figure 5O).

These results highlight the utility of Seq-Scope in identifying

cell types associated with specific histopathological structures

and identifying their specific cell type markers. These results

also demonstrate that Seq-Scope can reveal the microscopic

structure of transcriptome phenotypes in a way similar to immu-

nofluorescence microscopy.

Seq-Scope visualizes histological layers of colonic wall
The colon is another gastrointestinal organ with complex tissue

layers, histological zonation structure, and diverse cellular com-

ponents (Levine and Haggitt, 1989). Using the colon, we exam-

ined whether Seq-Scope can examine the spatial transcriptome

in a non-hepatic tissue. The colonic wall is histologically divided

into the colonic mucosa and the external muscle layers (Farkas

et al., 2015). The colonic mucosa consists of the epithelium

and lamina propria, and the epithelium is further divided into

the crypt-base, transitional, and surface layers (Figure 6A).

Clustering analysis of the gridded Seq-Scope dataset (Figures

S6A–S6E; Table S4) revealed transcriptome phenotypes corre-

sponding to these layers (Figure 6B) and visualized their spatial

locations (Figures 6C and S6F).
cting cell typemarker proteins. DAPI-absent areaswith high auto-fluorescence

ed), and other cells (gray) around fibrotic lesion.



Figure 6. Seq-Scope identifies various cell types from colonic wall histology

Spatial transcriptome of colonic wall was analyzed using Seq-Scope. 10-mm grid dataset was analyzed.

(A–I) Seq-Scope reveals major histological layers (A–C), epithelial cell diversity (D–F), and non-epithelial cell diversity (G–I) through transcriptome clustering. (A, D,

and G) Schematic representation of colonic wall structure. Clusters corresponding to the indicated cell types were visualized in UMAPmanifold (B, E, and H) and

histological space (C, F, and I).

(J) Cluster-specific markers were examined in dot plot analysis. DCSC, deep crypt secretory cells; EEC, enteroendocrine cells; SOM Neuronal, somatostatin-

expressing neuronal cells.

See also Figure S6 and Table S4.
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Seq-Scope identifies individual cellular components
from colon tissue
In addition to visualizing the layer structure, Seq-Scope also re-

vealed the various colonic epithelial and non-epithelial cell types

(Figures 6D–6I and S6F–S6H). In the crypt base, stem/dividing,

deep crypt secretory cell (DCSC) and Paneth-like cell pheno-

types (Figures 6E, 6F, and S6G) were identified. The stem/

dividing cells expressed higher levels of ribosomal proteins while

expressing lower levels of other epithelial cell-type markers (Fig-

ure 6J; Table S4). DCSCs expressed secretory cell markers,

such as Agr2, Spink4, and Oit1 (Figure 6J; Table S4), whereas
Paneth-like cells expressed Mptx1, a recently identified marker

of the Paneth cell in the small intestine (Haber et al., 2017).

Seq-Scope also identified distinct cell types at the surface of

the colonic mucosa (Figures 6D–6F). The top layer of the epithe-

lial cells expressed surface colonocyte markers, such as Aqp8

(Fischer et al., 2001), Car4 (Borenshtein et al., 2009), and

Saa1 (Eckhardt et al., 2010) (Figure 6J; Table S4). Some of the

epithelial cells expressed goblet cell-specific markers, such as

Zg16, Fcgbp, and Tff3 (Haber et al., 2017; Pelaseyed et al.,

2014) (Figure 6J; Table S4). In addition, Seq-Scope also identi-

fied enteroendocrine cells (EEC) expressing hormones, such as
Cell 184, 1–14, June 24, 2021 9



Figure 7. Seq-Scope enables microscopic analysis of colon spatial transcriptome

(A–C) Spatial cell-type mapping shown in Figure 6 was refined using multiscale sliding windows analysis with 5-mm (left), 2-mm (center), or 1-mm (right) intervals.

(D–H) Original Seq-Scope dataset was analyzed by spatial gene expression plotting, using indicated layer-specific (D), cell-type-specific (E and F), or cell-cycle-

specific (H) marker genes. These spatial transcriptome features were consistent with underlying H&E histology (G).

See also Figure S7 and Table S5.
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glucagon, peptide YY, insulin-like peptide, and CCK (Figure 6J;

Table S4).

Below the epithelium, there are connective tissue layers,

including the lamina propria, submucosa, and external muscle

layers. Seq-Scope identified many non-epithelial cell types

from these layers, including smooth muscle, fibroblasts, enteric

neurons, M4s, and B cells (Figures 6G–6I). These results indicate

that Seq-Scope can transcriptomically recognize most of the

major cell types present in the normal colonic wall.
Seq-Scope performs microscopic analysis of colonic
spatial transcriptome
To take advantage of Seq-Scope’s high-resolution data, we em-

ployed multiscale sliding windows analysis (Figures 7A–7C) and

spatial plotting of cluster markers (Figures 7D–7F and S7),

focusing on the same region of the colonic wall. Multiscale

sliding windows analysis drew a clear line between different

cellular compartments (Figures 7A–7C); the original gridding

analysis (10 mm) or analysis with smaller grids (5 mm) did not
10 Cell 184, 1–14, June 24, 2021
reveal this level of high-resolution detail (Figures S6I–S6N). The

sliding windows cluster assignments (Figures 7A–7C) were

congruent with the spatial plotting of the relevant cluster marker

genes (Figures 7D–7F) and H&E histology data (Figure 7G). For

instance, in all of these data, B cells and M4s were confined to

the lamina propria, whereas crypt base cell markers were

confined to the epithelium (separated by dotted lines in Figures

7D–7G). The B cells and M4s are often in very close proximity

(Figures 7C and 7F), likely due to their functional interactions

(Spencer and Sollid, 2016). Genes specifically expressed in S

and G2/M cell-cycle phases (Nestorowa et al., 2016) were highly

expressed in the crypt base area where stem/dividing cells are

located (Levine and Haggitt, 1989), however, their expression

was lower in the surface area (Figure 7H).
DISCUSSION

The data presented here demonstrate that Seq-Scope can visu-

alize the histological organization of the transcriptome
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architecture at multiple scales, including at the tissue zonation

level, cellular component level, and even subcellular level. Equip-

pedwith an ultra-high-resolution output and an outstanding tran-

scriptome capture output, Seq-Scope drew a clear boundary

between different tissue zones, cell types, and subcellular com-

ponents. Previously existing technologies could not provide this

level of clarity due to their low-resolution output and/or ineffi-

ciency in transcriptome capture.

Several factors could have contributed to Seq-Scope’s high

transcriptome capture efficiency. First, the dense and tight

arrangement of barcoded clusters in Seq-Scope could have

increased the transcriptome capture rate because they almost

eliminated ‘‘blind spot’’ areas between the spatial features.

Second, unlike somemethods that produce a bumpy array sur-

face, Seq-Scope produces a flat array surface, enabling direct

interaction between the capture probe and tissue sample.

Third, solid-phase amplification, limited bymolecular crowding

(Mercier and Slater, 2005), might have provided the two-

dimensional concentration of RNA-capture probes ideal for

the molecular interaction with tissue-derived RNA. Finally,

biochemical strategies specific to our protocol, such as the

secondary strand synthesis, retrieval, and amplification

methods, could have increased the yield of transcriptome

recovery.

Another benefit of Seq-Scope is its scalability and adapt-

ability. In the current study, we used the MiSeq platform for the

HDMI-array generation; however, virtually any sequencing plat-

forms that use spatially localized amplification, such as Illumina

GAIIx, HiSeq, NextSeq, and NovaSeq, could be used for gener-

ation of the HDMI-array. Although MiSeq has small imaging

areas, HiSeq2500 and NovaSeq can provide �90 mm2 and

800 mm2 of the uninterrupted imaging area, respectively, offer-

ing a larger field of view. Newer sequencing methods, such as

NextSeq and NovaSeq, are based on a patterned flow cell tech-

nology, which could provide more defined spatial information for

the HDMI-encoded clusters. However, it is also possible that

patterned nanowells may limit the effective RNA capture area,

leading to a lower RNA capture efficiency.

In terms of the cost, the current MiSeq-based HDMI-array can

be generated at �$150/mm2. The cost could be further reduced

to $11/mm2 in HiSeq2500 or $2.6/mm2 in NovaSeq, based on

current costs of sequencing. As for turnaround time, the HDMI-

array generation takes a day after 1st-Seq, and library prepara-

tion can be completed in 2 days. A single MiSeq machine

can finish 1st-Seq in�3 h because it only involves cluster gener-

ation and 25-bp single-end sequencing steps. An experienced

researcher can disassemble the 1st-Seq flow cell within

5–10 min. The procedure is straightforward and not laborious

or technically demanding. Therefore, Seq-Scope can make the

ultra-high-resolution ST accessible for any type and scale of

basic science and clinical work.

Convenience in the data analysis pipeline is another strength

of Seq-Scope. Most of the Seq-Scope analyses were seam-

lessly performed with widely used standard software tools,

such as Illumina RTA (Ravi et al., 2018), STARsolo (Dobin et al.,

2013), and Seurat (Butler et al., 2018). Being relatively effortless

in an analytic perspective will be a hugely attractive factor for

many experimental biologists.
However, it is worth noting that the MiSeq flow cell was not

originally designed for ST (Ravi et al., 2018); therefore, exposing

the cluster surface was initially challenging. In the liver dataset,

scratch-associated data loss was often observed due to the

damages during disassembly. When generating the colon data-

set, we minimized the damage by protecting the HDMI-array

with hydrogel filling. Therefore, the colon result was almost

scratch-free and revealed higher numbers of UMI per area than

the liver result. In the future, designing a detachable flow cell for

1st-Seq could make this process even more straightforward.

The current HDMI-array is not encoded by the UMI sequence;

therefore, we used random priming positions during the second-

ary strand synthesis as the alternative UMI. Based on our library

size diversity (400–850 bp), the UMI diversity available for a single

gene is estimated to be �400. In each HDMI, the ratios between

the gene andUMI numbers are very close to 1:1 (Figure S2J), indi-

cating that the current UMI diversity (�400) is far from saturation

and should be more than enough to reliably de-duplicate

sequencing reads without the risk of over-collapsing.

Nevertheless, UMI-encodedHDMI-array could be useful in the

future. We experimented on generating the UMI-encodedHDMI-

array by a template-based extension (Figure S1F) and found that

both UMIs, produced by either random priming or array encod-

ing, perform well in collapsing the PCR-multiplicated read se-

quences (Figure S1G).

Due to the extremely high number of HDMI and relatively low

number of UMI per HDMI, HDMI-UMI information needs to be

aggregated in some way to produce an interpretable result. In

the ST field, the 10 mm feature size is considered a sweet spot

for spatial single-cell analysis (Marx, 2021). Consistent with this

idea, data binning with 10 mmgrids performed well for identifying

various cell types from the liver and colon datasets, whereas

smaller grids did not perform well. To overcome this limitation

and fully utilize Seq-Scope’s high resolution, we employed three

independent approaches: (1) histology-guided image segmenta-

tion assay for spatial single cell analysis, (2) multiscale sliding

windows analysis for high-resolution cell type mapping, and (3)

direct spatial plotting to monitor spatial gene expression at

high resolution. The results from these analyses demonstrated

the utility of Seq-Scope in performing high-resolution spatial sin-

gle cell/subcellular analysis and identifying biological information

that former technologies were unable to approach.

Our results also indicate that Seq-Scope has the potential to

improve and complement current scRNA-seq approaches.

scRNA-seq for solid tissues requires extensive tissue dissocia-

tion and single-cell sorting procedures. These procedures create

very harsh conditions, which may eliminate labile cell popula-

tions and induce stress responses. Several cell types, such as

elongated myofibers, lipid-laden adipocytes, and cells tightly

joined by the extracellular matrix and tight junctions, are not

amendable for conventional scRNA-seq. By capturing the tran-

scriptome directly from a frozen tissue slice, Seq-Scope can

capture single-cell transcriptome signatures from cell types

that have previously been difficult to work with.

In sum, we report on Seq-Scope technology, which provides a

versatile solution for spatial single-cell and subcellular analyses.

A single run of Seq-Scope could produce the microscopic gene

expression imaging data for the whole transcriptome. The vast
Cell 184, 1–14, June 24, 2021 11
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amount of information produced by Seq-Scope would accel-

erate scientific discoveries and might lead to a new paradigm

in molecular diagnosis.

Limitations of the study
The current Seq-Scope study focused exclusively on the poly-

A-tagged transcriptome and did not uncover information

beyond that. This limitation can be overcome through further

research. For example, oligonucleotide- or transposase-

tagged antibody cocktails were recently utilized in VISIUM

(Vickovic et al., 2020) and DBiT-Seq (Deng et al., 2021; Liu

et al., 2020) to spatially profile multiple protein expression or

chromatin regulation. In the future, these methods could be

combined with Seq-Scope to enable the microscopic charac-

terizations of proteome or epigenome regulation in tissue

sections.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
12
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Animal Tissue Samples

d METHOD DETAILS

B Generation of Seed HDMI-oligo Library

B HDMI-oligo Cluster Generation and Sequencing

through MiSeq (1st-Seq)

B Processing MiSeq Flow Cell into the HDMI-array

B HDMI-array Disassembly

B Tissue Sectioning, Attachment and Fixation

B Tissue Imaging and mRNA release

B Reverse Transcription

B Tissue Digestion

B Secondary Strand Synthesis and Purification

B Library Construction and Sequencing (2nd-Seq)

B cDNA Labeling Assay

B Generation and Testing of UMI-encoded HDMI-array

B Immunohistochemistry

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Input Data

B Tissue Boundary Estimation

B Read Alignment and Generation of Digital Gene

Expression Matrix

B Error Correction Methods for Spatial Barcodes

B Potential Sources of PCR and Sequencing Errors in

Seq-Scope Processes

B Estimation of False-negative and False-positive Spatial

Assignments during Error Correction

B Analysis of Spliced and Unspliced Gene Expression

B Subcellular Transcriptome Analysis

B Image Segmentation for Single Cell Analysis

B Data Binning through Square Grids
Cell 184, 1–14, June 24, 2021
B Cell Type Mapping (Clustering) Analysis

B Analysis of Transcripts Discovered Outside of Tissue-

Overlaid Region

B Multiscale Sliding Windows Analysis

B Visualization of Spatial Gene Expression

B Benchmark Analysis

B UMI Efficiency Test
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cell.

2021.05.010.

ACKNOWLEDGMENTS

The authors thank Drs. Euisik Yoon, Hojoong Kwak, Chang H. Kim, Seungwon

Jung, Yongsung Kim, and Ms. Irene Hwang for their helpful advice and com-

ments. We thank Psomagen Inc. and the U-M Microbiome Core for their

help in experiments. The work was supported by the NIH (T32AG000114

to C.-S.C.; K01AG061236 to M.K.; U01HL137182 to H.M.K., J.X., and

Y.S.; R01DK118631 and R03HD098552 to G.J.; R01DK114131 and

R01DK102850 to J.H.L.; and P30AG024824, P30DK034933, P30DK089503,

P30CA046592, P30AR069620, and U2CDK110768), the Chan Zuckerberg

Initiative (to H.M.K.), Frankel Cardiovascular Center Inaugural Grant (to

J.H.L. and M.K.), American Association for the Study of Liver Diseases (to

J.H.L. and H.M.K.), Mcubed (to M.K., H.M.K., and J.H.L.), Glenn Foundation

(to J.H.L.), Taiwan Government Scholarship (to J.-E.H.), and ADVANCE and

MTRAC awards (to J.H.L.), funded by the Michigan Economic Development

Corporation.

AUTHOR CONTRIBUTIONS

C.-S.C. performed experiments. J.X. and Y.S. performed computational ana-

lyses. S.-R.P., J.-E.H., andM.K. contributed tomethod development. G.J. and

H.M.K. supervised J.X. and Y.S. in computational analyses. J.H.L. conceived

the idea, led the project, and prepared themanuscript draft. All authors revised

the manuscript and approved the final version.

DECLARATION OF INTERESTS

J.H.L. is an inventor on pending patent applications related to Seq-Scope.

H.M.K. is presently an employee of Regeneron Pharmaceuticals, in which he

owns stock and stock options.

Received: January 13, 2021

Revised: March 29, 2021

Accepted: May 7, 2021

Published: June 10, 2021

REFERENCES

Aizarani, N., Saviano, A., Sagar, Mailly, L., Durand, S., Herman, J.S., Pessaux,

P., Baumert, T.F., and Grün, D. (2019). A human liver cell atlas reveals hetero-

geneity and epithelial progenitors. Nature 572, 199–204.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD74 Biolegend 151002 (clone: In1/CD74); RRID: AB_2566502

Clec4f Biolegend 156804 (clone: 3E3F9); RRID: AB_2814082

a-SMA (Acta2) abcam ab5694 (clone: EPR5368); RRID:AB_2223021

Saa1 + Saa2 abcam ab199030 (clone: EPR19235)

MMP7 Cell Signaling 3801 (clone: D4H5); RRID:AB_2144465

Donkey anti-Rat IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 488

ThermoFisher Scieintific A-21208 (lot#2273677); RRID:AB_141709

Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 594

ThermoFisher Scieintific A-21207 (lot#2145022); RRID:AB_141637

Donkey anti-mouse IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 647

ThermoFisher Scieintific A-31571 (lot#1549801); RRID:AB_162542

Biological samples

Frozen liver section from control mice (Depdc5F/F/Tsc1F/F) Cho et al., 2019 N/A

Frozen liver section from TD mice (Alb-Cre/Depdc5F/F/Tsc1F/F) Cho et al., 2019 N/A

Frozen colon section from WT mice (C57BL/6) This study N/A

Chemicals, peptides, and recombinant proteins

DraI enzyme NEB R0129

Exo I enzyme NEB M2903

EcoRI-HF enzyme NEB R3101

Phusion Hot Start II High-Fidelity PCR Master Mix Thermo Fisher F565S

Agarose Fisher BP160

Paraformaldehyde Electron Microscopy

Sciences

15170

Isopropanol Sigma-Aldrich 19516

Hematoxylin Agilent S3309

Bluing buffer Agilent CS702

UltraPure Distilled water Invitorgen 10977-015

Eosin Sigma HT110216

Collagenase I Thermo Fisher 17018-029

Pepsin Sigma P7000

Maxima 5x RT Buffer Thermo Fisher EP0751

Maxima H- RTase Thermo Fisher EP0751

RNase Inhibitor Lucigen 30281

Ficoll PM-400 Sigma F4375-10G

dNTPs NEB N0477L

Actinomycin D Sigma-Aldrich A1410

Proteinase K NEB P8107S

Klenow Fragment (exonuclease-deficient) NEB M0212

AMPure XP Beckman Coulter A63881

Kapa HiFi Hotstart Readymix KAPA Biosystems KK2602

Zymoclean Gel DNA Recovery Kit Zymo Research D4001

Cy3-dCTP APExBIO B8159

dATP NEB 0446S

dTTP NEB 0446S
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dGTP NEB 0446S

dCTP NEB 0446S

DAPI VECTASHIELD H-1200

SYBR Gold DNA stain Invitrogen S11494

Critical commercial assays

MiSeq Reagent Nano Kit v2 (300-cycles) Illumina MS-103-1001

MiSeq Reagent Kit v3 (150-cycle) Illumina MS-102-3001

Deposited data

Seq-Scope liver and colon raw sequencing data

and digital gene expression (DGE) matrix

GEO GSE169706

Seq-Scope liver and colon processed datasets

(annotated RDS) and H&E images

Deep Blue Data

https://doi.org/10.7302/cjfe-wa35

10X VISIUM human brain dataset 10X Genomics https://support.10xgenomics.com/

spatial-gene-expression/datasets/

1.1.0/V1_Human_Brain_Section_1

DBiT-Seq mouse embryo dataset GEO GSM4096261 in GSE137986

Slide-Seq mouse cerebellum dataset Single Cell Portal 180819_11 in SCP354

Slide-SeqV2 mouse embryonic brain dataset Single Cell Portal 190921_19 in SCP815

HDST mouse olfactory bulb dataset GEO GSM4067523 in GSE130682

Original ST mouse liver dataset Zenodo 10.5281/zenodo.4399655

Slide-Seq mouse liver dataset Single Cell Portal 1808038_8 in SCP354

MARS-Seq mouse liver dataset GEO GSE84498

Drop-Seq mouse liver dataset GEO GSM4760739 from GSE157281

Bulk RNA-Seq mouse liver dataset GEO GSM4055217 from GSE136684

Oligonucleotides

HDMI-TruEcoRI: CAAGCAGAAGACGGCATACGAGATTCTTT

CCCTACACGACGCTCTTCCGATCTHNNBNBNBNBNBNBN

BNNNNCCCGTTCGCAACATGTCTGGCGTCATAGAATTCCG

CAGTCCAGGTGTAGATCTCGGTGGTCGCCGTATCATT

This paper N/A

HDMI-DraI: CAAGCAGAAGACGGCATACGAGATTCTTTCCCT

ACACGACGCTCTTCCGATCTNNVNNVNNVNNVNNVNNNNN

TCTTGTGACTACAGCACCCTCGACTCTCGCTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTAAAGACTTTCACCAGTCCATGATGT

GTAGATCTCGGTGGTCGCCGTATCATT

This paper N/A

HDMI32-DraI: CAAGCAGAAGACGGCATACGAGATTCTTTCC

CTACACGACGCTCTTCCGATCTNNVNBVNNVNNVNNVNNV

NNVNNVNNVNNNNNTCTTGTGACTACAGCACCCTCGACTC

TCGCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAAAGACTTTCA

CCAGTCCATGATGTGTAGATCTCGGTGGTCGCCGTATCATT

This paper N/A

Read1-DraI: ATCATGGACTGGTGAAAGTCTTTAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAGCGAGAGTCGAGGGTGCTGTAG

TCACAAGA

This paper N/A

Read1-EcoRI: CTGGACTGCGGAATTCTATGACGCCAGACATG

TTGCGAACGGG

This paper N/A

UMI-Oligo: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAANNNNN

NNNCTATGACGCCAGACATGTTGCGAACGGG

This paper N/A

Forward primer for first-round library PCR: TCT TTC CCT ACA

CGA CGC*T*C

This paper N/A

Reverse primer for first-round library PCR: TCA GAC GTG TGC

TCT TCC*G*A

This paper N/A

(Continued on next page)

ll

e2 Cell 184, 1–14.e1–e10, June 24, 2021

Please cite this article in press as: Cho et al., Microscopic examination of spatial transcriptome using Seq-Scope, Cell (2021), https://doi.org/
10.1016/j.cell.2021.05.010

Resource

https://doi.org/10.7302/cjfe-wa35
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Brain_Section_1
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Brain_Section_1
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Brain_Section_1


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Forward primer for second-round library PCR: AAT GAT ACG

GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC

GCT CT*T *C

This paper N/A

Reverse primer for second-round library PCR: CAA GCA GAA

GAC GGC ATA CGA GAT [8-mer index sequence] GTG ACT

GGA GTT CAG ACG TGT GCT CTT CC*G *A

This paper N/A

Software and algorithms

Custom codes used in the paper Github https://github.com/leeju-umich/

Cho_Xi_Seqscope

Seurat Seurat V4

STARsolo https://github.com/alexdobin/

STAR/blob/master/docs/

STARsolo.md

2.7.5c

Illumina Sequencing Analysis Viewer Illumina 2.4.7

ImageJ https://imagej.net/Welcome 1.52n

Adobe Photoshop CC Adobe 20.0.4

BioVenn Hulsen et al., 2008 https://www.biovenn.nl

Graphpad Prism 8 Graphpad Software 8.0.0

Other

Tungsten Carbide Tip Scriber IMT IMT-8806

Video Demonstration of Key Procedures Youtube Seq-Scope

Method Playlist

https://www.youtube.com/playlist?list=

PLRwwF9JZ_f5P7wXjgt90o52Jz9JyMYWf4
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents may be directed to the corresponding author Jun Hee Lee (leeju@

umich.edu).

Materials availability
All materials used for Seq-Scope are commercially available.

Data and code availability
The Seq-Scope liver and colon datasets generated from this study are available at the Gene Expression Omnibus database (GEO

accession number GSE169706) as raw sequences and initial digital gene expression matrix. Processed RDS files for cell type

mapping analyses and H&E histology images are available at Deep Blue Data (fhttps://doi.org/10.7302/cjfe-wa35). Codes for the

data analysis are available at Github (https://github.com/leeju-umich/Cho_Xi_Seqscope). Video Demonstration of Key Procedures

is available at Youtube (https://www.youtube.com/playlist?list=PLRwwF9JZ_f5P7wXjgt90o52Jz9JyMYWf4).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal Tissue Samples
The liver and colon samples are described in our recent studies (Cho et al., 2019; Ro et al., 2016). The livers were collected from

8 week-old control (Depdc5F/F/Tsc1F/F, male) and TD (Alb-Cre/Depdc5F/F/Tsc1F/F, female) mice (Cho et al., 2019). The colons are

from 8-week-old C57BL/6 wild-type male mice.

METHOD DETAILS

Generation of Seed HDMI-oligo Library
Seq-Scope is initiated with the generation of a HDMI-oligo seed library (Figures 1A and S1A). In the current report, we used two ver-

sions of the library – HDMI-DraI and HDMI32-DraI, whose sequences are provided below. The libraries have the same backbone

structure with different lengths of HDMI sequences. HDMI is a sequence of random nucleotides designed to avoid the DraI digestion
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sites using Cutfree software (Storm and Jensen, 2018). HDMI32-DraI is an improved version of HDMI-DraI. For the liver and colon

studies, HDMI-DraI was used. HDMI-DraI was generated by IDT as Ultramer oligonucleotides, while HDMI32-DraI was generated

by Eurofins as Extremer oligonucleotides.

Backbone: (P5 sequence) (TR1: TruSeq Read 1) (HDMI) (HR1: HDMI Read 1) (Oligo-dT) (DraI) (DraI-adaptor) (P7 sequence)

HDMI-DraI: CAAGCAGAAGACGGCATACGAGAT TCTTTCCCTACACGACGCTCTTCCGATCT NNVNNVNNVNNVNNVNNNNN TC

TTGTGACTACAGCACCCTCGACTCTCGC TTTTTTTTTTTTTTTTTTTTTTTTTTT TTTAAA GACTTTCACCAGTCCATGAT GTGTAGA

TCTCGGTGGTCGCCGTATCATT

HDMI32-DraI: CAAGCAGAAGACGGCATACGAGAT TCTTTCCCTACACGACGCTCTTCCGATCT NNVNBVNNVNNVNNVNNVN

NVNNVNNVNNNNN TCTTGTGACTACAGCACCCTCGACTCTCGC TTTTTTTTTTTTTTTTTTTTTTTTTTT TTTAAA GACTTTCACCA

GTCCATGAT GTGTAGATCTCGGTGGTCGCCGTATCATT

HDMI-oligo Cluster Generation and Sequencing through MiSeq (1st-Seq)
HDMI-DraI or HDMI32-DraI was used as the ssDNA library and was sequenced in MiSeq using Read1-DraI as the custom Read1

primer. The Read1-DraI sequence is provided below.

Read1-DraI: ATCATGGACTGGTGAAAGTC TTTAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA GCGAGAGTCGAGGGTGCTGTAGT

CACAAGA

Read1-DraI has a reverse complementary sequence covering HR1, Oligo-dT, DraI and DraI-adaptor sequences of HDMI-DraI and

HDMI32-DraI libraries.

Initially, the libraries were sequenced using the MiSeq v2 nano platform to titrate the ssDNA library concentration to generate the

largest possible number of confidently-sequenced HDMI clusters (Figures S2A and S2B). After several rounds of optimization, HDMI-

DraI was loaded at 100pM while HDMI32-DraI was loaded at 60-80pM. For actual implementation of Seq-Scope, the MiSeq v3 reg-

ular platform was used. MiSeq was performed in manual mode: 25bp single end reading (for HDMI-DraI) or 37bp single end reading

(for HDMI32-DraI). The MiSeq runs were completed right after the first read without denaturation, indexing or re-synthesis steps. The

flow cell was retrieved right after the completion of the single end reading steps. The MiSeq result was provided as a FASTQ file that

has the HDMI sequence followed by the 5-base adaptor sequence in TR1. Thumbnail images of clusters, visualized using Illumina

Sequencing Analysis Viewer, were used to inspect the cluster morphology and density (Figures 2A, S2A, and S2B).

The HDMI sequences contain 20-32 random nucleotides, which can produce 260 billion (20-mer in HDMI-DraI) or 1 quintillion

(32-mer in HDMI32-DraI) different sequences. Due to this extreme diversity, the duplication rate of the HDMI sequencewas extremely

low (Figure S2G; less than 0.1% of total HDMI sequencing results), even though the MiSeq identified more than 30 million HDMI

clusters. HDMI32-DraI or longer HDMI molecules, producing more diversity, could be more appropriate for future analysis involving

a larger field of view.

MiSeq has 38 rectangular imaging areas, which are called ‘‘tiles.’’ 19 tiles are on the top of the flow cell, while the other 19 tiles

are on the bottom of the flow cell (Figure S2C; tiles 2101-2119). For each sequencing output, the tile number and XY coordinates

of the cluster from which the sequence originates can be found in the FASTQ output file of MiSeq. Only the bottom tiles were

used for Seq-Scope analysis because the top tiles were destroyed during the flow cell disassembly.

Processing MiSeq Flow Cell into the HDMI-array
After 1st-Seq, theMiSeq flow cell was further processed to convert HDMI-containing clusters to HDMI-array (Figure 1D). The flow cell

retrieved from theMiSeq run was washed with nuclease-free water 3 times. Then, the flow cell was treated with DraI enzyme cocktail

(1UDraI enzyme (#R0129, NEB) in 1X CutSmart buffer) in 37�Covernight to completely cut out the P5 sequence and expose oligo-dT.

The flow cell was then loaded with exonuclease I cocktail (1U Exo I enzyme (#M2903, NEB) in 1X Exo I buffer) in 37�C for 45 min to

eliminate non-specific ssDNA. P7-bound HDMI-DraI oligonucleotides make a duplex with Read1-DraI, so they were protected

from Exo I digestion. Then, the flow cell was washed with water 3 times, 0.1N NaOH 3 times (each with 5 min incubation at room

temperature, to denature and eliminate the Read1-DraI primer), 0.1M Tris (pH7.5, to neutralize the flow cell channel) 3 times (each

with a brief wash), and then water 3 times (each with a brief wash).

HDMI-array Disassembly
Then, the flow cell was disassembled so that the HDMI-array was exposed to the outside and could be attached to the tissue sec-

tions. To protect the HDMI-array, agarose hydrogel (BP160, Fisher) was used to fill the flow cell channel before disassembly (for the

colon dataset). 1.5% agarose suspension was prepared in water and incubated at 95�C for 1min. The resulting 1.5%melted agarose

solution was loaded into the flow cell and chilled to solidify the gel. Using the Tungsten Carbide Tip Scriber (IMT-8806, IMT), all the

boundary lines of the channel (corresponding to the imaging area) were scored. Additional lines inside of the boundaries were scored

to help break the glass into small pieces. Then, the pressure was applied around the scored lines to break the glass out. Then, the

glass particles and agarose debris were removed by washing with water. The top-exposed flow cell (HDMI-array; Figure S2K, left)

was then ready for tissue attachment. The disassembly process could be practiced with used MiSeq flow cells, which could be ob-

tained as a byproduct of conventional sequencing. After the practice flow cell was disassembled, the quality of cluster arrays could
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be inspected by staining with DNA dye, such as SYBR Gold. An exemplary SYBR Gold staining image of the disassembled flow cell

with minimal array damage was provided as a reference (Figure S2K, right). It is critical to avoid scratches that damage the HDMI

cluster array.

Tissue Sectioning, Attachment and Fixation
OCT-mounted fresh frozen tissue was sectioned in a cryostat (Leica CM3050S,�20 C) at a 5� cutting angle and 10 mm thickness. The

tissues were maneuvered onto the HDMI-array from the cutting stage (Figure 1E). The tissue-HDMI-array sandwich was moved to

room temperature, and the tissues were fixed in 4% formaldehyde (100 mL in PBS, diluted from the EM-grade 16%paraformaldehyde

(#15170, Electron Microscopy Sciences)) for 10 min.

Tissue Imaging and mRNA release
The tissues were incubated 2 min in 100 mL isopropanol, and then stained with 80 mL hematoxylin (S3309, Agilent) for 5 min. After

washing with water, the tissues were treated with 80 mL bluing buffer (CS702, Agilent) for 2 min. After washing with water, the tissues

were treated with buffered eosin (1:9 = eosin (HT110216, Sigma): 0.45M Tris-Acetic buffer (pH 6.0)). After washing with water, the

tissues were dried and mounted in 85% glycerol. The tissues were then imaged under a light microscope (MT6300, Meiji Techno).

To release RNAs from the fixed tissues, the tissues were treated with 0.2 U/mL collagenase I (17018-029, Thermo Fisher) at 37�C
20 min, and then with 1mg/mL pepsin (P7000, Sigma) in 0.1M HCl at 37�C for 10 min, as previously described (Salmén et al., 2018).

Reverse Transcription
The tissue was washed with 40 mL 1X RT buffer containing 8 mL Maxima 5x RT Buffer (EP0751, Thermofisher), 1 mL RNase Inhibitor

(30281, Lucigen) and 31 mL water. Subsequently, reverse transcription (Figures 1F and S1B) was performed by incubating the tissue-

attached HDMI-array in 40 mL RT reaction solution containing 8 mLMaxima 5x RT Buffer (EP0751, Thermofisher), 8 mL 20%Ficoll PM-

400 (F4375-10G, Sigma), 4 mL 10mM dNTPs (N0477L, NEB), 1 mL RNase Inhibitor (30281, Lucigen), 2 mL Maxima H- RTase (EP0751,

Thermofisher), 4 mL Actinomycin D (500ng/ml, A1410, Sigma-Aldrich) and 13 mL water. The RT reaction solution was incubated in a

humidified chamber at 42�C overnight.

Tissue Digestion
The next day, the RT solution was removed, and the tissue was submerged in the exonuclease I cocktail (1U Exo I enzyme (#M2903,

NEB) in 1X Exo I buffer) and incubated at 37�C for 45 min to eliminate DNA that did not hybridize with mRNA. Then the cocktail was

removed and the tissues were submerged in 1x tissue digestion buffer (100 mM Tris pH 8.0, 100 mM NaCl, 2% SDS, 5 mM EDTA,

16 U/mL Proteinase K (P8107S, NEB). The tissues were incubated at 37�C for 40 min.

Secondary Strand Synthesis and Purification
After the tissue digestion, the HDMI-array was washed with water 3 times, 0.1N NaOH 3 times (each with 5 min incubation at room

temperature), 0.1M Tris (pH7.5) 3 times (each with a brief wash), and then water 3 times (each with a brief wash). This step eliminated

all mRNA from the HDMI-array.

After the washing steps, the HDMI-array was treated with a secondary strand synthesis mix (18 mL water, 3 mL NEBuffer-2, 3 mL

100 mMTruseq Read2-conjugated Random Primer with TCA GAC GTG TGC TCT TCC GAT CTN NNN NNN NN sequence (IDT), 3 mL

10mMdNTPmix (N0477, NEB), and 3 mL Klenow Fragment (exonuclease-deficient; M0212, NEB). The HDMI-array was incubated at

37�C for 2 hr in a humidity-controlled chamber.

After secondary strand synthesis (Figure 1G), the HDMI-array was washed with water 3 times to remove all DNAs that were not

bound to the HDMI-array, so that each HDMI molecule corresponded to each single copy of the secondary strand. Then the

HDMI-array was treated with 30 mL 0.1 N NaOH for 5 min to elute the secondary strand. The elution step was duplicated to collect

60 mL (in total) of the secondary strand product. The 60 mL secondary strand product was neutralized by mixing with 30 mL 3 M po-

tassium acetate, pH5.5.

The volume of the neutralized secondary strand product was adjusted to 100 mL by adding �10 mL water. The solution was then

subjected to AMPure XP purification (A63881, Beckman Coulter) using a 1.8X bead/sample ratio, according to the manufacturer’s

instruction. The final elution was performed using 40 mL water.

Library Construction and Sequencing (2nd-Seq)
First-round library PCR was performed using Kapa HiFi Hotstart Readymix (KK2602, KAPA Biosystems) in a 100 mL reaction volume

with 40 mL secondary strand product as the template and forward (TCT TTC CCT ACA CGA CGC*T*C) and reverse (TCA GAC GTG

TGC TCT TCC*G*A) primers at 2 mM. Stars (*) in the primer sequences denote the phosphorothioate bond modifications. PCR con-

dition: 95�C 3min, 13-15 cycles of (95�C 30 s, 60�C 1min, 72�C 1min), 72�C 2min and 4�C infinite. PCR products were purified using

AMPure XP in a 1.2X bead/sample ratio.

Second-round library PCR (Figure 1H) was performed using Kapa HiFi Hotstart Readymix (KK2602, KAPA Biosystems) in 100 mL

reaction volumewith 10 mL of 2 nM first-round PCR product as a template and forward (AATGAT ACGGCGACCACCGAGATC TAC

ACT CTT TCCCTA CACGACGCT CT*T*C) and reverse (CAA GCAGAAGACGGCATA CGAGAT [8-mer index sequence] GTG ACT
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GGA GTT CAG ACG TGT GCT CTT CC*G*A) primers at 1 mM. PCR condition: 95�C 3 min, 8-9 cycles of (95�C 30 s, 60�C 30 s, 72�C
30 s), 72�C 2 min and 4�C infinite. PCR products were purified using agarose gel elution for all products between 400-850bp

size, using the Zymoclean Gel DNA Recovery Kit (D4001, Zymo Research) according to the manufacturer’s recommendation.

Then the elution products were further purified using AMPure XP in a 0.6X-0.7X bead/sample ratio. The pooled libraries were sub-

jected to paired-end (100-150bp) sequencing in the Illumina and BGI platforms at AdmeraHealth Inc., Psomagen Inc., and Beijing

Genome Institute. The HDMI discovery plot assessments indicated that all sequencing platforms worked well for analyzing Seq-

Scope data.

cDNA Labeling Assay
To label cDNAs on the HDMI-array, all the steps were identically performed as described above, except that, after mRNA release, the

HDMI array was subjected to cDNA labeling assay (Salmén et al., 2018) instead of library generation procedures. After mRNA release,

the tissue-attachedHDMI array was incubated in 40uL fluorescent reverse transcription solution containing 13 mLwater, 8 mLMaxima

5x RT Buffer (EP0751, Thermofisher), 8 mL 20% Ficoll PM-400 (F4375-10G, Sigma), 0.8 mL 100mM dATP (from 0446S, NEB), 0.8 mL

100mM dTTP (from 0446S, NEB), 0.8 mL 100mM dGTP (from 0446S, NEB), 0.1 mL 100mM dCTP (from 0446S, NEB), 1.5 mL 6.45mM

Cy3-dCTP (B8159, APExBIO), 1 mL RNase Inhibitor (30281, Lucigen), 4 mL Actinomycin D (500ng/ml, A1410, Sigma-Aldrich) and 2 mL

Maxima H- RTase (EP0751, Thermofisher). Reverse transcription was performed at 42�C overnight.

Then, the cocktail was removed and the tissues were submerged in 1x tissue digestion buffer (100 mM Tris pH 8.0, 100 mM

NaCl, 2% SDS, 5 mM EDTA, 16 U/mL Proteinase K (P8107S, NEB)). The tissues were incubated at 37�C for 40 min. After

washing the HDMI-array surface with water 3 times, it was mounted in 80% glycerol and then observed under a fluorescent micro-

scope (Meiji).

Generation and Testing of UMI-encoded HDMI-array
UMI-encoded HDMI array was generated using the HDMI-TruEcoRI library, which is similar to the other ssDNA libraries described

above, but it does not have an oligo-dT sequence (Figure S1F).

Backbone: (P5 sequence) (TR1: TruSeq Read 1) (HDMI) (HR1B: HDMI Read 1B) (EcoRI) (EcoRI adaptor) (P7 sequence)

HDMI-TruEcoRI: CAAGCAGAAGACGGCATACGAGAT TCTTTCCCTACACGACGCTCTTCCGATCT HNNBNBNBNBNBNBNB

NNNN CCCGTTCGCAACATGTCTGGCGTCATA GAATTC CGCAGTCCAG GTGTAGATCTCGGTGGTCGCCGTATCATT

For MiSeq running, Read1-EcoRI was used as the read 1 primer.

Backbone: (EcoRI adaptor) (EcoRI) (HR1B)

Read1-EcoRI: CTGGACTGCG GAATTC TATGACGCCAGACATGTTGCGAACGGG

The library was sequenced using MiSeq v2 nano platform at 100pM concentration and generated 1.4 million sequenced HDMI

clusters per mm2. MiSeq was performed in manual mode, 25bp single end reading, using the Read1-EcoRI as the custom Read

1 primer. The flow cell was retrieved right after the completion of the single end reading step. Then, theMiSeq flow cell was processed

to attach UMI and oligo-dT sequences to theHDMI clusters. The flow cell waswashedwithwater 3 times and then loadedwith EcoRI-

HF cocktail (1U EcoRI-HF (R3101, NEB) in 1X CutSmart NEB buffer) to cut out the P5 sequence. After 37�C overnight incubation, the

flow cell was washed with water 3 times, 0.1N NaOH 3 times (each with 5 min incubation at room temperature), 0.1M Tris (pH 7.5)

3 times, and thenwater 3 times. The flow cell was then loadedwith 1X Phusion Hot Start II High-Fidelity Mastermix (F565S) containing

5 mM of UMI-oligo (sequence provided below).

Backbone: (oligo-dA) (UMI) C (HR1B)

UMI-Oligo: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA NNNNNNNN C TATGACGCCAGACATGTTGCGAACGGG

The flow cell was then incubated at 95�C for 5 min, 60�C for 1 min and 72�C for 5 min. Then, the flow cell was loaded with an

exonuclease I cocktail (see above for composition) and incubated for 45 min at 37�C. The flow cell was then washed with water

3 times, 0.1N NaOH 3 times (each with 5 min incubation at room temperature), 0.1M Tris (pH 7.5) 3 times, and then water 3 times.

This completes the generation of the UMI-encoded HDMI-array.

Performance of the UMI-encoded HDMI-array was tested using 2 mg total RNA purified from mouse liver, using the same reverse

transcription and library preparation method described above (but without the tissue slice). The library was sequenced in Illumina

HiSeqX and HiSeq4000 platforms.

Immunohistochemistry
For immunohistochemistry, frozen liver sections were fixedwith 4%paraformaldehyde, blocked with 1%BSA, 0.01%Triton X-100 in

DPBS, and incubated with primary antibodies detecting indicated proteins, followed by staining with Alexa fluorescence-conjugated

secondary antibodies and DAPI. Immunofluorescence was detected in Nikon A1 confocal microscope.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Input Data
There are three experimental outputs from Seq-Scope, which will serve as input data for downstream computational analysis. (1)

HDMI sequence, tile and spatial coordinate information from 1st-Seq, (2) HDMI sequence, coupled with cDNA sequence from

2nd-Seq, and (3) Histological image obtained from H&E staining of the tissue slice.

Tissue Boundary Estimation
To estimate the tissue boundary, the HiSeq data were joined into MiSeq data according to their HDMI sequence. As a result, for each

of the HiSeq data whose HDMI was found from MiSeq, the tile number and XY coordinates were assigned. Finally, using a custom

python code, an HDMI discovery plot was generated to visualize the density of HiSeq HDMI in a given XY space of each tile (Fig-

ure S1C). The density plots were manually assigned to the corresponding H&E images (Figures 2C, S2D, and S2E).

Read Alignment and Generation of Digital Gene Expression Matrix
Read alignment was performed using STAR/STARsolo 2.7.5c (Dobin et al., 2013), from which the digital gene expression (DGE) ma-

trix was generated. From MiSeq data, HDMI sequences of clusters located on the bottom tile were extracted and used as a ‘‘white-

list’’ for the cell (HDMI) barcode after reverse complement conversion. The first 20 (HDMI-DraI version) or 30 (HDMI32-DraI) basepairs

of HiSeq data Read 1were considered as the cell (HDMI) barcode. HDMI assignments were performed using the default error correc-

tion method implemented in STARsolo (1MM_multi). Details about the spatial barcode assignment and error correction methods are

described below in separate sections.

Due to the extensive washing steps after secondary strand synthesis, it was expected that each single molecule of HDMI-cDNA

hybrid would lead to one secondary strand in the library. Therefore, the first 9-mer of Read 2 sequence, which is derived from the

Randomer sequence, could serve as a proxy of the unique molecular identifier (UMI). Accordingly, the first 9 basepairs of HiSeq

Read 2 data were copied to Read 1 and used as the unique molecular identifier (UMI). Read 2 was trimmed at the 30 end to remove

polyA tails of length 10 or greater and was then aligned to the mouse genome (mm10) using the Genefull option with no length

threshold and no cell filtering (Figure S1D). For the genes whose expression couldn’t be monitored by the Genefull option, the

Gene option was used to generate the gene expression discovery plots. UMIs were deduplicated using the default error correction

method implemented in STARsolo (1MM_All), in which all UMIs with 1 mismatch distance to each other are collapsed (i.e.,

counted once).

For saturation analysis, multiple read alignments were performed using 25%, 50% and 75% subsets of the 2nd-Seq results. The

alignment output values were plotted in a graph (Figure S2I) to generate a saturation curve in Graphpad Prism 8 (Graphpad Software,

Inc.). Hyperbolic regression was used to estimate the total unique transcript number in the liver (60,292,407 to 96,899,822; 95%

confidence interval) and colon (308,586,493 to 510,224,639; 95% confidence interval) Seq-Scope libraries.

Error Correction Methods for Spatial Barcodes
Although the possibility of per-base error is very low, Seq-Scope involves a multi-step processing of sequences and DNA samples,

so we expect that a small but non-negligible fraction of HDMI barcodes will contain errors. For example, the probability of ‘‘perfect

barcode sequencing’’ without any errors throughout the 1st-Seq and 2nd-Seq steps (see below for details) was estimated to be

�92.3%, with the remaining reads potentially leading to challenges in the correct barcode assignment. However, under stochastic

assumptions of sequencing errors, we estimate only < 1% will have multiple errors, and our error correction procedure is robust

against occasional errors occurring only once throughout the 1st- and 2nd-Seq steps. In the current study, error correction and de-

multiplexing of HDMI barcodes were performed in STARsolo using the 2nd-Seq result as a FASTQ input, and the 1st-Seq result as a

barcode whitelist. We used the STARsolo’s default option (1MM_multi), which implements a robust statistical error correction

method similar to 10X CellRanger 2.2.0. In this method, HDMIs are allowed to have one mismatch, and the posterior probability

calculation is used to choose the barcode when multiple mismatched sequences are present.

In our empirical evaluation, when we did not apply any error correction method, we observed that 13.3% (liver) and 5.1% (colon) of

HDMI barcodes no longer matched between 1st- and 2nd-Seq. These were comparable to our expected error rate of 7.7% and sug-

gested that the error correction method we employed substantially rescued potential false negatives. On the other hand, our error

correction introduced only negligible false positives. With error correction, the total fraction of false positive HDMI matches between

1st- and 2nd-seq was estimated to be 0.2% (liver data) and 0.7% (colon data). Therefore, our Seq-Scope procedure, combined with a

standard error correction method, is robust against producing false-positive barcode assignments and also rescues a significant

number of false-negative barcodes from the dataset.

Potential Sources of PCR and Sequencing Errors in Seq-Scope Processes
In the whole Seq-Scope procedure, there are three potential sources of errors: 1st-Seq cluster generation step, 1st-Seq sequencing

step, and 2nd-Seq library prep and sequencing steps.

1st-Seq cluster generation (�2.3%): Even though the HDMI barcodes are randomly generated in a single-stranded oligonucleotide

library, they were amplified on the flow cell surface so that every barcode in the cluster would have the same HDMI sequence. Based
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on the high fidelity of DNA polymerase, errors introduced during cluster generation are expected to beminimal. To estimate the extent

of replication errors during cluster generation, we used a PCR fidelity estimator (Sharifian, 2010). After 25 cycles of solid-phase

isothermal amplification by Bst DNA polymerase (error rate was set as 10�4), which generates approximately 1,000 copies of

HDMI (20-mer nucleotide)-containing molecules per cluster (Bentley et al., 2008), it was estimated that 97.7% of molecules will

have no errors, and only 2.27% of molecules will have a single error. HDMI sequences with multiple errors will be less than

0.03%. Therefore, most of the HDMI sequences in a single cluster are expected to be error-free.

1st-Seq sequencing step (�3%): Errors can be also introduced during the sequencing step; however, the Illumina SBS is well

known to be one of the most reliable high-throughput sequencing technologies. During 1st-Seq, clusters were robustly filtered

through the algorithms offered by the Real Time Analysis (RTA). Only the clusters passing filters (PF clusters) were used for the co-

ordinate assignment. Randomly created HDMI sequences produced high and well-balanced base diversity, which enabled high-

quality sequencing at high-density library-loading conditions. Consequently, the Q30 rate (having > 99.9% accuracy in base calling)

was very high, at above 96% (96.89% for liver 1st-Seq and 96.21% for colon 1st-Seq). The Q20 rate (having > 99% accuracy in base

calling) was even higher than 99% (99.4% for liver 1st-Seq and 99.2% for colon 1st-Seq). The base composition of each sequencing

position was perfectly consistent with the expected HDMI sequencing pattern (NNNNNBNNBNNBNNBNNBNN) for more than 99%

of all sequenced clusters (Figure S2F; 99.08% for liver 1st-Seq and 99.09% for colon 1st-Seq). Based on the current Q30 and Q20

rates, we estimate the total 1st-Seq sequencing error rates for 20-mer HDMI as �3%.

2nd-Seq library preparation and sequencing steps (�2.4%): A small number of barcode errors could be introduced during second-

ary strand synthesis, PCR-based library amplification, and 2nd-Seq sequencing reads. Based on the nature of these procedures, we

do not expect that Seq-Scope will produce substantially more errors compared to the other available ST or scRNA-seqmethods. For

instance, the exonuclease-deficient Klenow enzyme produces 1 error per 10,000 bases. So, the error rate of 20-base HDMI will be

less than 0.2%. The KAPA HIFI enzyme we used for library amplification has an extremely low error rate (1 error per 3.63 106 bases),

so even after 21-25 total cycles of amplification, the error rate of 20-base HDMI will be again less than 0.2%. Finally, if we suppose

that every HDMI was sequenced in 2nd-Seq just at Q30 (> 99.9% accuracy), there will be a 2% chance of producing an error in the

sequence. Therefore, the total errors produced in the 2nd-Seq steps were estimated to be around 2.4%.

The total rate of errors (7.7%) was estimated by adding all the possible error rates of each step: 1st-Seq cluster generation (2.3%) +

1st-Seq sequencing (3%) + 2nd-Seq library prep and sequencing (2.4%). Therefore, 92.3% of the final HDMI sequences were esti-

mated to be error-free. However, in real experiments, the actual rate of errors could vary at each step; therefore, it is expected

that there will be substantial variations from this value. Most importantly, these barcode errors are unlikely to produce false positives

because we use a whitelist from 1st-Seq to assign the spatial barcode. The errors will mostly contribute to a small fraction of false

negatives, which are less problematic and can be recovered through error correction (see below) and/or additional sequencing.

Estimation of False-negative and False-positive Spatial Assignments during Error Correction
To estimate the rate of mismatch errors that were corrected by our pipeline, we performed spatial HDMI assignment without an error

correction method (w/o Correction). Removal of error correction (w/o Correction) decreased the total number of spatially assigned

(whitelisted) unique transcripts by 13.3% (liver; L to L in Figure S2H) and 5.1% (colon; C to C in Figure S2H). These rates will be equal

to the false-negative barcode assignment rate that was rescued by the error correction. The rate of multiple errors, which the current

algorithm will not correct, can be estimated to be much lower than these rates (0.3% to 3%).

False-positive spatial assignment could be more problematic and should also be avoided as much as possible. To understand the

extent of potential false-positive spatial assignment, we performed a reciprocal misassignment analysis – liver 2nd-Seq results were

analyzed using the colon 1st-Seq whitelist (L to C), which is not expected to have correctly matching HDMI. Likewise, colon 2nd-Seq

results were analyzed using the liver 1st-Seq whitelist (C to L). For the misassignment analyses, liver and colon 2nd-Seq results that

were obtained from the separate lanes of the sequencer were selected and used to eliminate the potential interference between the

two datasets. Compared to the datasets with correct assignment (set as 100%; L to L and C to C), the misassigned dataset exhibited

spatial assignment rates of 0.2% (L to C) and 0.7% (C to L), both of which are almost negligible (Figure S2H). Therefore, we can es-

timate that the rate of false-positive spatial assignment will be below 1%.

All these analyses indicate that over 99% of Seq-Scope data are accurate in the spatial assignment.

Analysis of Spliced and Unspliced Gene Expression
To obtain separate read counts for spliced and unspliced transcripts, we used the Velocyto (La Manno et al., 2018) option in the

STARsolo software (Figure S1E). All spliced or unspliced mRNA reads were plotted onto the histological coordinate plane to identify

nuclear-cytoplasmic structure (see below in ‘‘Visualization of Spatial Gene Expression). To test the reproducibility of the image anal-

ysis, all geneswere randomly divided into three groups, and spliced and unspliced read counts were obtained independently. Images

were compared with each other to calculate Pearson’s correlation coefficients in NIH ImageJ using Just Another Colocalization Plu-

gin (JACoP) (Bolte and Cordelières, 2006). Nuclear-specific (Malat1, Neat1 andMlxipl) and mitochondria-encoded (all genes whose

name start with ‘‘mt-‘‘) transcripts were also plotted and analyzed. The correlation coefficients were assembled and presented in a

heat map produced by Graphpad Prism 8 (Graphpad Software Inc.).
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Subcellular Transcriptome Analysis
Transcriptomic nuclear centers were identified from the unspliced RNA plot using watershed local maxima detection implemented in

ImageJ (Sage and Unser, 2003). HDMI transcriptome was partitioned into 14 bins according to their mm distances from the nuclear

center. Then, the genes that were most significantly enriched in the nuclear area (with 5 mm from the nuclear center) were isolated.

Image Segmentation for Single Cell Analysis
To perform cell segmentation using H&E histology images, the watershed algorithm implemented in ImageJ (Sage and Unser, 2003)

was utilized. The cell segmentation results isolated the single hepatocyte areas, which are consistent with the visual inspection of the

H&E images (Figure 4A). Cell boundary images and cell center coordinates were exported from ImageJ, and used to aggregate Seq-

Scope data so that the transcriptome information from all HDMI pixels within each segmented area were collapsed into their corre-

sponding cell center coordinate barcode, generating a single cell-indexed DGEmatrix. The DGEmatrix was used for clustering anal-

ysis as described below. Single cell segmentation data and the spatial single cell annotation data were overlaid onto the histology

images or unspliced RNA plot images using Adobe Photoshop CC.

Data Binning through Square Grids
Data binning was performed by dividing the imaging space into 100 mm2 (10 mm-sided) square grids and collapsing all HDMI-UMI

information into one barcode per grid. Alternatively, data binning was also performed with 25 mm2 (5 mm-sided) square grids. After

data binning, gene types were filtered to only contain protein-coding genes, lncRNA genes, and immunoglobulin/T cell receptor

genes, to contain only the first-appearing splicing isoforms, and to exclude any hypothetical gene models (genes designated as

Gm-number).

Cell Type Mapping (Clustering) Analysis
The binned and processed DGE matrix was analyzed in the Seurat v4 package (Butler et al., 2018). Feature number threshold was

applied to remove the grids that corresponded to the area that was not overlaid by the tissue or was extensively damaged through

scratches. Data were normalized using regularized negative binomial regression implemented in Seurat’s SCTransform function.

Clustering was performed using the shared nearest neighbor modularity optimization implemented in Seurat’s FindClusters function.

Clusters with mixed cell types were subjected to an additional round of clustering to get separation between the different cell types,

while similar cell types were grouped together. UMAP (Becht et al., 2018) manifold, also built in the Seurat package, was used to

assess the clustering performance. Topmarkers from each cluster, identified through the FindAllMarkers function, were used to infer

and annotate cell types. Then the clusters were visualized in the UMAP manifold or the histological space using DimPlot and Spa-

tialDimPlot functions, respectively. Raw and normalized transcript abundance in each tile, cluster and spatial grid was visualized

through the VlnPlot, DotPlot, FeaturePlot and SpatialFeaturePlot functions built in the Seurat package. Area-proportional Venn dia-

grams were made using BioVenn (Hulsen et al., 2008).

Analysis of Transcripts Discovered Outside of Tissue-Overlaid Region
Some RNAs were discovered in an area where the tissue was not overlaid. It is possible that a trace of tissue fluid or debris, as well as

ambient RNAs released from the tissues, may have generated this pattern. Although the RNA discovery in these regions was scarce,

the compositions of RNA discovered in tissue-overlaid (nFeature > 250 in liver dataset) and non-overlaid regions (nFeature% 250 in

liver dataset) were very similar to each other (r = 0.9833 in Spearman coefficients). The minor differences between these two regions

could be obviously explained by the different rates of ambient RNA release/capture and the different composition of cell types in the

tissue debris. Therefore, it is plausible that ambient and debris-derived RNAs generated the pattern of RNA discovery in the tissue

non-overlaid region.

Multiscale Sliding Windows Analysis
Multiscale analysis was employed to fine tune the annotation using FindTransferAnchors and TransferData functions implemented in

Seurat. The anchors provided by the 10 mm grid dataset were used to guide other datasets produced from the same Seq-Scope

result. Compared to the 10 mm grid dataset, the 5 mm grid dataset was much noisier in UMAP (Figure S6L) and spatial (Figure S6N,

center) analyses even after multiscale fine tuning. To circumvent this problem, we employed the sliding windows analysis; after the

initial 10 mm grid sampling, the grid was shifted both horizontally and vertically with 5 mm, 2 mm or 1 mm intervals, producing 4, 25 and

100 times more data, respectively (see Figure S6O for a schematic illustration). Then, the original 10 mm grid dataset was used to

guide these sliding windows datasets to perform high-resolution cell type annotation. Sliding windows analysis with 5 mm intervals

(Figure S6N, right) performed much better when compared to the 5 mm grid datasets (Figure S6N, center), and showed the UMAP

pattern (Figure S6M) whose shape is more similar to the original 10 mm grid dataset (Figure S6E). Sliding windows analyses with

5 mm intervals were used to produce left panels in Figures 5D, 5H, 5I, 7A–7C, and S5I. Sliding windows analyses with 2 mm intervals

were used to produce right panels in Figure 5D, 5H, 5I, and S5I, and middle panels in Figures 7A–7C. Sliding windows analyses with

1 mm intervals were used to produce the right panels in Figures 7A–7C.
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Visualization of Spatial Gene Expression
Spatial gene expression was visualized using a custom python code. Raw digital expression data of the queried gene (or gene list)

were plotted onto the coordinate plane according to their HDMI spatial index. Considering the lateral RNA diffusion distance of 1.7 ±

2 mm (mean ± SD) measured from the original ST study (Ståhl et al., 2016), gene expression densities were plotted as a�3 mm-radius

circle at a transparency alpha level between 0.005 and 0.5. In spatial gene expression images with a white background, the intensity

of the colored spot indicates the abundance of transcripts around the spot location. Spatial gene expression images with a black

background were created for genes or gene lists of high expression values, to make it easy to adjust the linear range of gene expres-

sion density and to overlay gene expression densities of different queries with different pseudo-color encoding. The inverse image of

the greyscale plot was pseudo-colored with red, blue, green or gray, and the image contrast was linearly adjusted to highlight the

biologically relevant spatial features. Finally, different pseudo-colored images were overlaid together to compare the gene expres-

sion patterns in the same histological coordinate plane. Cell cycle-specific genes, such as S phase- and G2/M phase-specific gene

lists (Nestorowa et al., 2016), were retrieved from the Seurat package, and their mouse homologs were identified using the biomaRt

package (Durinck et al., 2009). The list of cell type markers used in spatial plots can be found in Table S5.

Benchmark Analysis
The performance of Seq-Scope in liver and colon experiments were benchmarked against publicly available datasets produced by

10X VISIUM (https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Brain_Section_1), DBiT-Seq

(GEO: GSM4096261 in GSE137986) (Liu et al., 2020), Slide-Seq (Single Cell Portal: 180819_11 in SCP354) (Rodriques et al.,

2019), Slide-SeqV2 (Single Cell Portal: 190921_19 in SCP815) (Stickels et al., 2021), and HDST (GEO: GSM4067523 in

GSE130682) (Vickovic et al., 2019). Liver Seq-Scope dataset was separately benchmarked against former liver datasets produced

using original ST (Zenodo: 10.5281/zenodo.4399655) (Hildebrandt et al., 2021) and Slide-Seq (Single Cell Portal: 1808038_8 in

SCP354) (Rodriques et al., 2019). The Seq-Scope dataset had a large area that was not covered by tissues, so we isolated the tis-

sue-overlaid HDMI pixels and used them for the benchmark analysis. Tissue-overlaid HDMI pixels were isolated from the 10 mm grid

areas that were used for the cell type mapping analysis described above. Center-to-center resolution was calculated per each pixel

as the distance from the closest pixel. For the technologies that have a defined pixel area (VISIUM, DBiT-Seq and HDST), pixel den-

sity was calculated as the inverse of the pixel area. For Slide-Seq, Slide-SeqV2 and Seq-Scope, pixel density was calculated in

150 mm grids (Slide-Seq and Slide-SeqV2) and 10 mm grids (Seq-Scope) of the final dataset. Grids that contained less than 10 pixels

were excluded from the analysis. nUMI corresponds to the number of unique transcripts mapped to the transcriptome, and nGene

corresponds to the number of gene features discovered per each pixel. nUMI/pixel and nGene/pixel values were multiplied by the

average pixel density (pixel/mm2) to obtain the area-normalized nUMI and nGene (nUMI/mm2 and nGene/mm2, respectively) for

each pixel.

UMI Efficiency Test
Efficiencies of UMI-encoding methods for collapsing duplicate read counts were evaluated using the data produced from the ‘‘Gen-

eration and Testing of UMI-encoded HDMI-array’’ section. UMI encoded by the HDMI-array (UMI_Array; 49th-57th positions of

Read 1) and UMI encoded by the Random primed position (UMI_Randomer; 1st-9th positions of Read 2) were identified from the

2nd-Seq results. Uncollapsed read count, read count collapsed with UMI_Array, and read count collapsed with UMI_Randomer

were calculated for all the HDMI sequences observed, and their relative abundances were presented in a line graph (Figure S1G).

The result indicates that both UMI_Array and UMI_Randomer are efficient in collapsing duplicate read counts of 2nd-Seq results.
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Supplemental figures

Figure S1. Seq-Scope workflow, related to Figure 1

(A and B) Chemistry workflow for generating HDMI-array in 1st-Seq (A), and using the HDMI-array for constructing library for 2nd-Seq (B). The 2nd-Seq library is

subjected to the standard next-generation sequencing workflow in Illumina and BGI platforms.

(C-E) Bioinformatics workflow for estimating tissue boundaries (C), visualizing and analyzing spatial gene expression patterns (D), and determining nuclear and

cytoplasmic areas (E).

(F) Chemistry workflow for generating UMI-encoded HDMI-array in 1st-Seq.

(G) Evaluation of UMI-encoding methods based on either random priming (UMI_Randomer) or array encoding (UMI_Array). The number of HDMI with multiple

read counts was efficiently reduced by either UMI_Randomer- or UMI_Array-based collapsing methods.

See STAR Methods for details.
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Figure S2. Seq-Scope performance, related to Figure 2

(A) Representative images of HDMI clusters in the HDMI-array, retrieved from the Illumina sequence analysis viewer (SAV). Each picture visualizes ‘‘A’’ intensity at

the 21st cycle of the 1st-Seq SBS, where > 97% of HDMI clusters exhibit fluorescence.

(B) Titration of HDMI-oligo library loading concentration for obtaining maximum number of sequenced clusters. Total (red) and sequenced (blue) cluster numbers

were presented for indicated 1st-Seq conditions. Data are presented as mean ± SEM.

(C) Schematic diagram depicting tile arrangement in bottom surface of MiSeq v3 regular flow cell.

(D and E) Schematic diagram visualizes the tiles which were attached to the indicated liver (D, top) or colon (E, top) tissues. On the bottom, H&E staining images

and their corresponding HDMI discovery plots were presented.

(F) HDMI sequencing results from 1st-Seq. Base incorporation rate (%) at each location of the HDMI sequences in liver (left) and colon (right) 1st-Seq is presented

in a line graph. Please note that we used standard machine mixing for making random oligonucleotides. In this method, even though A:C:G:T was dispensed at

25:25:25:25, random bases potentially have variations from the designated ratio (in our case, A > C > G > T) due to the different chemical properties of the bases.

The sequence pattern of 1st-Seq is consistent with the expected sequence (NNNNNBNNBNNBNNBNNBNN) for more than 99% of sequenced clusters.

(G) Duplication rate of HDMI (standard 25-mer) and HDMI32 (extended 32-mer) in the MiSeq platform. HDMI duplication rate was very low at around 0.05%, and

all duplicates were removed from the 1st-Seq whitelist dataset before it was used for the Seq-Scope analysis. Data are presented as mean ± SD with individual

values.

(H) Reciprocal misassignment analysis of HDMI spatial mapping. Liver 2nd-Seq dataset was analyzed with Liver 1st-Seq dataset (L to L) or Colon 1st-Seq dataset

(L to C), and Colon 2nd-Seq dataset was analyzed with Colon 1st-Seq dataset (C to C) or Liver 1st-Seq dataset (C to L). Alignment was performed with default error

correction algorithm of STARsolo (Default) or without any error correction implementation (w/o Correction). Liver and colon 2nd-Seq datasets that were obtained

from the separate lanes of the sequencer were selected for these analyses to eliminate the potential interference between the two datasets.

(I) Saturation analysis of liver (red) and colon (blue) Seq-Scope dataset. Hyperbolic regression was used to estimate the total unique transcript number in the liver

and colon Seq-Scope libraries.

(J) The number of UMI (nUMI) per HDMI pixel (left), the number of gene features (nGene) per HDMI pixel (center), and the nUMI/nGene ratio per pixel (right) are

presented in violin plot.

(K) Exterior appearance (left) and SYBR Gold staining pattern (right) of the exemplarily disassembled MiSeq flow cell.
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Figure S3. Seq-Scope visualizes nuclear/mitochondrial/cytoplasmic subcellular architecture, related to Figure 3

(A-C and G) These figures provide additional examples of Seq-Scope output that visualizes the nuclear/mitochondrial/cytoplasmic subcellular architecture.

(A) Spatial plot of all unspliced and spliced transcripts, aswell as RNA species that are known to localize to nucleus in liver tissue (Nuc-targeted;Malat1,Neat1 and

Mlxipl).

(B) Spatial plot of all unspliced and spliced transcripts, as well as RNA species that are encoded by mitochondrial genome (Mt-encoded).

(C) Pearson correlations (r) between the indicated transcript intensities in the single cell area were presented as a heatmap.

(G) Spatial plot of unspliced and spliced transcript in three independent subsets of genes (Gene Subset 1-3). Pearson correlations (r) between these transcript

intensities were presented as a heatmap. S1-3, Spliced 1-3; U1-3, Unspliced 1-3.

(D-F) Potential reasons of why some segmented hepatocellular area did not exhibit nuclear/unspliced RNA-enriched area. Section slice may not contain nucleus

for the cell (D). Nuclear position in the section may not be ideal for the unspliced RNA capture (E). Transcriptionally inactive nuclei may express reduced levels of

unspliced RNAs (F).
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Figure S4. Spatial single-cell analyses using Seq-Scope dataset of normal liver, related to Figure 4

(A-E) Comparison of Seq-Scope transcriptome with bulk RNA-Seq and scRNA-Seq transcriptome. Individual dots represent a single gene showing expression

levels in both datasets. Correlations were evaluated in the Pearson coefficients between groups.

(F-I) Single hepatocyte transcriptome analysis using Seq-Scope. (F) Segmented hepatocyte transcriptomes were clustered into periportal (PP) and pericentral

(PC) populations. UMAP (upper) and heatmap (lower) analyses of clusters and cluster-specific genes were shown. (G) Spatial map of PP and PC hepatocellular

populations. (H) Top 50 PP- and PC-specific genes overlap between Seq-Scope and two independent scRNA-seq data. (I) Clustering, UMAP (upper) and spatial

plotting (lower) analyses were performed using only the top 50 PC/PP genes from Drop-Seq (left) and MARS-Seq (right).

(J) Spatial map of different hepatocellular clusters described in Figure 4D, overlaid with H&E staining and cell segmentation images. Four tiles, 2104-2107 (left to

right), were analyzed. PV, portal vein; CV, central vein.

(K) UMAP (left) and spatial plotting (right) analysis colored with continuous zonation color map (UMAP1 � UMAP2).

(L-O) Spatial expressions of individual genes were plotted onto histological coordinate planes roughly covering 0.8mm3 1mm area, usingmouse liver ST (L) and

Slide-Seq (M) datasets. These plots displayed substantially lower resolution and dynamic range with less obvious spatial details, when compared to the plots

generated by Seq-Scope (Figure 4E). RNA/gene capture output per pixel (N) or area (O) were compared between liver datasets produced using ST, Slide-Seq and

Seq-Scope technologies.

(P-V) Normal liver Seq-Scope dataset was analyzed by data binning with 10 mm-sided square grids. (P) Spatial density plot depicting the number of UMIs

discovered across 10 mmsquare grids. (Q) Violin plot depicting the number of gene features (nFeature) across the 10 mmsquare grids. Setting a 250 cutoff isolated

grid units covered by the tissue area (R), each of which contains around 700 UMIs (S). A UMAP plot visualizing all clusters (T) and a dot plot (U) and UMAP plots (V)

visualizing expression of cluster-specific markers are presented.
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Figure S5. Seq-Scope analysis of liver injury and inflammation, related to Figure 5

(A-F) TD liver Seq-Scope dataset was analyzed by data binning with 10 mm-sided square grids. (A) Spatial density plot depicting the number of UMIs discovered

across 10 mm square grids. (B) Violin plot depicting the number of gene features (nFeature) across the 10 mm square grids. Setting a 250 cutoff isolated grid units

covered by the tissue area (C), each of which contains around 700 UMIs (D). A UMAP plot visualizing all clusters (E) and a dot plot (F) visualizing expression of

cluster-specific markers.

(G) Spatial plots of unspliced, spliced and mitochondrial transcripts visualize subcellular structures.

(H) Expression of oxidative stress-responsive genes,Gpx3 and Sepp1, was examined in normal and TD liver using spatial plotting. Hepatocyte zonation is plotted

in the bottom panel as a reference. Gpx3 and Sepp1 were specifically induced in PP hepatocytes of TD liver.

(I) Multi-scale cell type mapping analysis using sliding windows with 5 mm and 2 mm intervals.

(J-O) Spatial plots visualizing expression of indicated cell type marker genes in TD liver.
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Figure S6. Seq-Scope analysis of colonic spatial transcriptome, related to Figure 6

(A-F) Colon Seq-Scope dataset was analyzed by data binning with 10 mm-sided square grids. (A) Spatial density plot depicting the number of UMIs discovered

across 10 mmsquare grids. (B) Violin plot depicting the number of gene features (nFeature) across the 10 mmsquare grids. Setting a 1,000 cutoff isolated grid units

covered by the tissue area (C), each of which contains around 2,700 UMIs (D). A UMAP plot visualizing all clusters (E) and spatial plots visualizing major his-

tological layers (F), epithelial cell diversity (G), and non-epithelial cell diversity (H) are presented.

(I-K) Colon Seq-Scope dataset was analyzed by data binning with 5 mm-sided square grids. (I) Violin plot depicting the number of gene features (nFeature) across

the 5 mm square grids. Setting a 250 cutoff isolated grid units covered by the tissue area (J), each of which contains around 600 UMIs (K).

(legend continued on next page)
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(L and M) UMAP plots constructed from 5 mmgrid dataset (L) and sliding windows dataset of 10 mmgrids with 5 mm intervals (M). Cell type annotation was guided

through the original 10 mm grid dataset (E).

(N) Multi-scale cell type mapping combined with sliding window analysis identifies clear boundaries between different cell types with high resolution. Colon Seq-

Scope dataset was analyzed using simple gridding with 10 mm-sided squares (left). Using the 10 mm dataset as an anchor, multi-scale cell type mapping was

performed in 5 mm gridding dataset (center). Even though 5 mm gridding improved the resolution, the image was very noisy due to scarce genetic information in

each grid. To overcome this, we performed the same analysis using a dataset produced by sliding windows analysis of 10 mmgridding dataset with 5 mm intervals.

The output images (right) clearly visualize the boundaries between different cell types with high resolution. Cell type annotations depict major histological layers

(upper), epithelial cell diversity (middle), and non-epithelial cell diversity (lower).

(O) Schematic diagrams depicting the sliding windows analysis methodology. Compared to the 10 mmgrid dataset, 5 mmgrid dataset produces higher resolution;

however, the transcriptome information revealed by 5 mm grid area is only 25% of what was recovered from 10 mm grid area. Correspondingly, 5 mm dataset

produced substantial noises in cell type assignment. To overcome this, sliding windows analysis was performed to maintain transcriptome information per pixel

while achieving higher resolution of cell typemapping by oversampling the data 4 times (5 mm interval), 25 times (2 mm interval) or 100 times (1 mm interval; scheme

not shown).
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Figure S7. Seq-Scope visualized spatial expression patterns of different colonic cell type markers, related to Figure 7

(A-J) Marker genes for indicated cell types were plotted onto the histological coordinate plane with indicated colors. Top row of each panel represents the

combined plotting of all listedmarkers. Bottom rows represent gene expression plotting of individual cell typemarker genes. For all spatial plots, width and height

of the imaging areas are approximately 800 mm and 1 mm, respectively.
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