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SUMMARY
Clear cell renal carcinoma (ccRCC) is a heterogeneous disease with a variable post-surgical course. To
assemble a comprehensive ccRCC tumor microenvironment (TME) atlas, we performed single-cell RNA
sequencing (scRNA-seq) of hematopoietic and non-hematopoietic subpopulations from tumor and tumor-
adjacent tissue of treatment-naive ccRCC resections. We leveraged the VIPER algorithm to quantitate sin-
gle-cell protein activity and validated this approach by comparison to flow cytometry. The analysis identified
key TME subpopulations, as well as their master regulators and candidate cell-cell interactions, revealing
clinically relevant populations, undetectable by gene-expression analysis. Specifically, we uncovered a tu-
mor-specific macrophage subpopulation characterized by upregulation of TREM2/APOE/C1Q, validated
by spatially resolved, quantitative multispectral immunofluorescence. In a large clinical validation cohort,
these markers were significantly enriched in tumors from patients who recurred following surgery. The study
thus identifies TREM2/APOE/C1Q-positive macrophage infiltration as a potential prognostic biomarker for
ccRCC recurrence, as well as a candidate therapeutic target.
INTRODUCTION

Clear cell renal carcinoma (ccRCC) is the most common histo-

logical subtype of renal carcinoma. Although primary disease

is treated surgically, approximately 40% of resected ccRCC pa-

tients will relapse and develop metastases (Koul et al., 2011).

With a 5-year survival of 10% (Sánchez-Gastaldo et al., 2017),

metastatic ccRCC is a lethal disease, underscoring the need to

understand the cellular andmolecular mechanisms in primary le-

sions that are prognostic for recurrence, both as biomarkers and

as potential targets for intervention. Although ccRCC is an immu-

nogenic tumor, the tumor-immune cell dynamics that regulate

effective anti-tumor responses remain incompletely character-

ized. Consistent with other immunogenic tumors, overall

immune infiltration and tumor mutation burden are partially pre-

dictive of response to therapy; yet, the value of these biomarkers
in clinical decisionmaking remains elusive. Indeed, the complete

picture of anti-tumor immune response drivers is complex (Da-

voli et al., 2017; Sxenbabao�glu et al., 2016; Turajlic et al., 2017).

Predictors of post-surgical disease recurrence are also limited,

with previous gene-expression studies suggesting CD44 as a

marker of recurrence (Li et al., 2015).

To date, the most comprehensive studies of the primary

ccRCC tumor micro-environment (TME) used cytometry by

time of flight (CyTOF) to interrogate markers of innate and adap-

tive immunity (Chevrier et al., 2017). These studies showed that

expression of T cell exhaustion markers and CD38+ myeloid cell

infiltration was associated with worse overall outcome. High-

throughput droplet-based single-cell RNA sequencing (scRNA-

seq) has recently emerged as a valuable tool to catalog the

diverse cellular subpopulations that comprise the TME, with

the ability to identify representative gene-expression signatures
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from thousands of individual cells in a single sample (Zheng

et al., 2017; Finak et al., 2015). In contrast to bulk RNA-seq,

scRNA-seq can characterize the transcriptional state of individ-

ual cell types, highlighting the role of rare populations whose

gene-expression signature would be diluted below the limits of

detection in bulk samples (Stuart et al., 2019). In contrast to

flow cytometry or CyTOF, scRNA-seq generates a genome-

wide profile of each individual cell’s transcriptome, without

requiring selection of predefined markers. The value of scRNA-

seq has been demonstrated in recent studies of melanoma

(Sade-Feldman et al., 2018; Jerby-Arnon et al., 2018) and breast

cancer (Chung et al., 2017). However, no systematic, single-cell

studies have been performed to study tumor tissue versus adja-

cent normal in ccRCC.

A key technical limitation of scRNA-seq is that gene-expres-

sion profiles are extremely sparse, with�80%–90%of genes un-

detected in every cell, a phenomenon known as ‘‘gene dropout.’’

While such data are effective in characterizing more molecularly

distinct cellular subpopulations, they are not well suited to study

specific genes and may also fail to detect more subtle differ-

ences, for instance, due to activation of a few critical lineage

markers (Elyada et al., 2019). Although dimensionality reduction

tools, such as the Seurat pipeline (Butler et al., 2018), are suc-

cessful in identifying individual subpopulations, the sparse and

noisy nature of the data often prevents elucidation of finer-grain

biological mechanisms.

To address this issue, we have developed the metaVIPER al-

gorithm (Ding et al., 2018), which leverages highly multiplexed,

tissue-specific gene-reporter assays to accurately measure the

activity of up to�6,500 regulatory proteins on a single-cell basis,

including transcription factors (TFs), co-factors (co-TFs),

signaling proteins (SPs), and surface markers (SMs), based on

the expression of their downstream regulatory targets (regulon).

MetaVIPER extends the VIPER algorithm (Alvarez et al., 2016) to

single cells, independent of lineage. For simplicity, here we will

use the term VIPER to refer to its single-cell implementation. Sin-

gle-cell, tissue-specific regulons are inferred using ARACNe, an

information theoretic algorithm that has been experimentally

validated in multiple tissue contexts, with a >70% accuracy in

target identification (Basso et al., 2005).

To comprehensively characterize the interaction of immune-

and non-immune cells in the ccRCC TME, we generated

scRNA-seq data from fluorescence-activated cell sorting

(FACS)-purified hematopoietic and non-hematopoietic cells

(Figure S1) dissociated from tumor and adjacent non-tumor tis-

sue of 11 treatment-naive primary ccRCC patients. To analyze

these data, we developed a VIPER-based scRNA-seq analysis
Figure 1. Deep profiling of CD45+ microenvironment by gene expressi

(A) UMAP plots for single-cell gene expression pooled across CD45+ samples, c

adjacent normal label.

(B) UMAP plots for VIPER-Inferred protein activity pooled across CD45+ sample

(C) Heatmap of top5 upregulated genes for each cluster by expression; each row

identity with cell type inferred by SingleR and tumor (red) or adjacent normal (blu

(D) Heatmap of top5 differentially upregulated proteins for each cluster by VIPER

(E) Bar plots of patient-by-patient cluster frequency in tumor minus frequency in a

(blue) indicate higher frequency in adjacent normal and values >0 (red) indicate h

(F) Bar plots of patient-by-patient cluster frequency in tumor minus frequency in

See also Figures S2 and S3.
pipeline to assess single-cell protein activity from single-cell

ARACNe networks followed by an optimized single-cell clus-

tering approach. These studies revealed a population of tumor-

specific C1Q+TREM2+APOE+ macrophages associated with

early post-surgical disease recurrence, as well as a potential

target for therapeutic intervention. To validate VIPER predic-

tions, we generated spectral flow cytometry and scRNA-seq

from matched patient samples, as well as quantitative, multi-

spectral immunofluorescence (qmIF) data for a set of proteins

significantly activated in a macrophage subpopulation prog-

nostic for post-surgical disease recurrence. Taken together,

these data provide a comprehensive atlas of primary ccRCC

TME subpopulations—including the master regulator (MR) pro-

teins that control their transcriptional state, lineage markers,

and predicted cell-cell interactions.

RESULTS

Protein activity analysis of CD45+ TME cells reveals
tumor-specific immune subpopulations
To study hematopoietic and non-hematopoietic populations in

the primary ccRCC TME at single-cell resolution, we isolated

live cells from 11 treatment-naive resected tumors, along with

adjacent normal tissue. Expression-based clustering of

scRNA-seq profiles revealed populations broadly consistent

across patients (Figure S2). We initially focused on the hemato-

poietic compartment (CD45+), which was visualized following

UMAP dimensionality reduction and clustered using the Seurat

Louvain algorithm (Stuart et al., 2019). To optimize often arbitrary

clustering while retaining scalability to hundreds of thousands of

cells, we performed Louvain clustering across a range of 100

resolution values and selected optimal clustering resolution by

optimizing a bootstrapped mean silhouette score (see STAR

Methods). This clustering approach resolved CD4 and CD8 lym-

phocytes, regulatory T cells (Tregs), natural killer (NK) cells (two

populations), macrophages, monocytes, and small populations

of B cells, mast cells, and plasma cells (Figure 1A), which were

represented in all patient samples. For visualization purposes,

we show a heatmap for the top five transcripts most uniquely

upregulated in each cluster (Figure 1C). These data confirmed

SingleR-inferred cellular identify of each cluster (Figure S3)—

including expression of IL7R in CD4 T cells, CD3 and granzyme

in CD8 T cells, and S100A8/S100A9 in monocytes.

However, expression-based clustering missedmultiple estab-

lished markers of these populations. For example, Tregs did not

show differential expression of the canonical FOXP3 transcrip-

tion factor; rather, the most overexpressed gene was
on and protein activity reveals tumor-specific immune populations

lusters visualized and labeled by cell type. Bottom plot is split by tumor versus

s. Bottom plot is split by tumor versus adjacent normal label.

represents a gene and each column represents a cell. Legend shows cluster

e) tissue source.

-inferred activity. Legend is as in (C).

djacent normal for each gene-expression cluster, grouped by stage; values <0

igher frequency in tumor.

adjacent normal for each VIPER cluster, grouped by stage, as in (E).
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interleukin-32 (IL-32). While other genes in this cluster, e.g.,

BATF, TIGIT, and TNFRSF18, are expressed in Tregs (Chao

and Savage, 2018), none is considered a canonical marker.

Further, expression-based clustering failed to recapitulate the

heterogeneity of these subpopulations; for example, it distin-

guished only two populations of myeloid cells (Figure 1). Finally,

considering intra-cluster statistics, differentially expressed

genes had poor reproducibility. For instance, average within-

cluster standard deviation of classic markers such as IL7R,

KLRD1, and CD8B was quite high, sIL7R = 3.19, sKLRD1 = 3.79,

and sCD8B = 3.01, respectively, exceeding the mean expression

values of the gene: mIL7R = 2.52, mKLRD1 = 3.17, and mCD8B = 1.41.

We next proceeded to assess whether protein activity-based

clustering, using VIPER, would yield additional robustness and

biological insight. Since we previously showed that regulatory

networks of lineage-related cells have >95% overlap (Mani

et al., 2008), we generated (n = 69) ARACNe-inferred regulatory

models—one for each gene-expression cluster in each patient—

as we expected that finer differences would likely be present

within primary lineages. For each single cell, we then used the

cluster-specific regulatory networks to perform VIPER-based

protein activity inference. While the resulting clusters were

generally consistent with those derived by gene expression, pro-

tein activity-based clusters showed multiple critical differences

(Figures 1B and 1D). For example, the most differentially active

protein in the Treg cluster was FOXP3, consistent with well-es-

tablished Treg biology (Chao and Savage, 2018) (Figure 1D),

and Cytotoxic T Lymphocyte Antigen-4 (CTLA-4), which is upre-

gulated on the surface of tumor-infiltrating Tregs (Arce Vargas

et al., 2017), was inferred as differentially active by VIPER. VIPER

identified a distinct CD8 T cell population with markers consis-

tent with exhaustion, including differential activation of LAG-3,

TOX2, and PD1, which had been missed by expression-based

analysis (Figures 1D and 2A). Additionally, myeloid cells were

further stratified by VIPER into macrophages and three distinct

monocyte subpopulations.

VIPER analysis identified several populations that were differ-

entially represented as a function of tumor stage and localization

in tumor versus adjacent non-tumor; thesewere undetectable by

gene-expression analysis (Figures 1E and 1F). Specifically, Treg,

CD8 T cell, and macrophage normalized counts were higher in

the tumor compared to normal adjacent tissue (p = 0.012, p =

0.006, p = 0.013, respectively). In contrast, monocyte, B cell,

and CD4 T cell counts were higher in adjacent normal (p =

0.097, p = 0.017, p = 0.018, respectively). Two NK cell clusters

were identified, one with higher counts in the adjacent normal

(NK cell 1) and a second with higher counts in tumor (NK cell 2)

(p = 0.09, p = 0.008, respectively). Consistent with prior data

(Becht et al., 2015), activity-based but not expression-based

clustering identified higher counts of exhausted CD8 T cells in tu-

mor versus adjacent normal (p = 0.0005), and also in stage pT3a

versus pT1a tumors (p = 0.015) (Figure 1F). Further, the tumor-

specific macrophage population identified by inferred protein

activity was more significantly enriched in tumor as compared

to adjacent normal than the coarse macrophage population

identified by gene expression, i.e., p = 0.0006 versus p = 0.013.

Reproducibility of individual markers was also significantly

improved by VIPER (Figure 1D), compared to gene expression
4 Cell 184, 1–18, May 27, 2021
(Figure 1C). For example, the standard deviation of the classic

markers (IL7R, KLRD1, and CD8B) was much lower, sIL7R =

0.75, sKLRD1 = 0.48, and sCD8B = 0.49, respectively, whereas

their mean activity value was substantially larger mIL7R = 5.28,

mKLRD1 = 6.54, and mCD8B = 5.88, as further confirmed by signif-

icant improvement in silhouette scores, SC = 0.7 by VIPER as

compared to a SC = 0.35 by gene-expression-based clustering

(Figure S4). Thus, based on the coefficient of variation (i.e., s/

m), reproducibility was increased between 8.9-fold (IL7R) and

25.6-fold (CD8B) by VIPER-based clustering.

Relative specificity of tumor-infiltrating immune cell
populations
To visualize protein activity differences in key cell-type markers

over-represented in tumor versus adjacent normal, including

macrophages, Tregs, and exhausted CD8 T cells, we generated

violin plots (Figure 2A). As shown, LILRB5 was identified as the

most differentially active among VIPER-inferred markers of tu-

mor-specific macrophages. These macrophages, as well as

the three monocyte clusters, showed high APOE activity. Among

T cells, FOXP3 was identified as the most activated protein in TIL

Treg; relative activation was also noted in tumor-associated CD8

T cells. CTLA-4 followed a similar pattern, consistent with previ-

ous data from bulk TIL Treg studies (Arce Vargas et al., 2017).

LAG-3 and PD-1 (PDCD1) showed similar inferred protein activ-

ity distributions, with higher activity in CD8 T cells and, in partic-

ular, in the CD8 TIL cluster (CD8 T cell 1) versus the (CD8 T cell 2)

cluster that was also represented in adjacent normal. PD-1 also

showed significant expression in TIL Treg. Interestingly, we

found significant activation of TOX2—a protein related to

TOX1, which plays a critical role in epigenetic reprogramming

of exhausted CD8 T cells (Khan et al., 2019; Scott et al.,

2019)—in the CD8 TIL cluster, consistent with an exhausted

phenotype. We complemented these differential activity ana-

lyses by examining genes that were differentially expressed in

the tumor-specific macrophage population, which were only

be identified by VIPER-based protein activity clustering (Fig-

ure 1C). Once a finer-grain cluster structure was revealed,

several genes were found to be overexpressed in specific clus-

ters, including APOE, C1QA-C, and TREM2, demonstrating the

ability to integrate both differential protein activity and differential

gene expression in the analysis (Figure 2B). Notably, differential

expression of these genes would have gone undetected if the

cluster structure produced by gene-expression-based clus-

tering had been used. As discussed below, we subsequently

validated the tumor-specific macrophage marker proteins iden-

tified by these analyses by immunofluorescence and correlated

those data with clinical outcome.

Master regulators of subpopulation transcriptional state
In addition to recapitulating differential activity of established

subpopulation markers, VIPER analysis identified novel proteins

that were differentially active in both common and rare subpop-

ulations. For TFs and co-TFs, these master regulator (MR) pro-

teins represent novel mechanistic drivers of the transcriptional

state of these cells, while signaling and surface-marker proteins

may represent novel lineage markers for FACS-based isolation,

as further confirmed by the protein-based validation assays



Figure 2. Known and novel tumor-infiltrating immune population markers discovered from single-cell transcriptomic and inferred proteo-

mic data

(A) Violin plots of VIPER-inferred proteins upregulated in CD45+ cell subsets corresponding to Tregs (FOXP3, CTLA4), exhausted CD8s (TOX2, LAG3, PD1,

CTLA4), and tumor-specific macrophages (LILRB5, APOE).

(B) Violin plots of top transcriptional markers (C1Q, APOE, TREM2) specifically upregulated in tumor-infiltrating macrophages as compared to other cell pop-

ulations as well as non-tumor macrophages.
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discussed below. Of note, we previously showed that a majority

(>70%) of VIPER-inferred proteins control the transcriptional

state of a cell by direct, physical regulation of their transcriptional

targets and can be used to efficiently reprogram cell state by

ectopic expression/co-expression (Carro et al., 2010; Dutta

et al., 2016; Talos et al., 2017; Arumugam et al., 2020). As a

result, these proteins may also represent attractive drug targets

for modulation of specific subpopulations. Candidate MR pro-

teins of each VIPER-inferred cluster are reported in Table S2;

the top MRs are also shown in Figure 1D. In particular, MRs of

tumor-enriched cell populations (i.e., Tregs, CD8 T 1 cells, and

macrophages) included both established drug targets for Tregs

or exhausted CD8 T cells, such as CTLA-4 and PD-1, as well

as less well-characterized markers of Tregs (CNIH1, STAM,

RAB33A, etc.), exhausted CD8 T cells (TOX2, SNAP47, CD82,

SIRT2, LAG-3, etc.), and tumor-infiltrating macrophages

(LILRB5, FAM120B, CD209, IGF1, TNFRSF11A, etc.). As a

result, these data provide a valuable resource of proteomic reg-

ulators for the full complement of cell phenotypes in the

ccRCC TME.

VIPER-inferred protein activity recapitulates flow
cytometry, overcoming scRNA-seq-related gene
dropout
To more fully characterize the proteomic profile of the ccRCC

TME and to benchmark VIPER results, we analyzed a subset of

samples for which scRNA-seq data were available using high-

dimensional flow cytometry with a 19-marker lymphoid panel

and 19-marker myeloid panel. Manual gating of specific marker

pairs broadly recapitulated the populations identified by VIPER-

based cluster analysis. For example, flow cytometry identified a

population of CD8+/PD1+/CD39+ CD8 T cells, with numerically

higher normalized counts in tumor versus adjacent non-tumor

samples (p = 0.057), consistent with the cluster of tumor-en-

riched exhaustedCD8 T cells identified by VIPER (Figure 3A). Cy-

tometry also identified a population of CD4+/CD127low/FOXP3+

Tregs, with higher representation in the majority of tumor versus

adjacent normal samples (p = 0.072). Similarly, these flow

studies confirmed the existence of two distinct NK cell subpop-

ulations (i.e., CD56high/CD16low versus CD56low/CD16high), a

CD11C+/CD163+ macrophage population with higher represen-

tation in tumor versus adjacent normal (p = 0.076), and three

distinct monocyte subpopulations (CD14+/CD16+, versus

CD14+/CD16–, versus CD14–/CD16+). While these populations

were validated by manual gating of specific proteins, our anal-

ysis shows that they could not have been inferred directly from

the high-dimensional flow cytometry data (Figures 3B–3G). To
Figure 3. Flow cytometry is better recapitulated by protein activity tha

(A) Representative flow cytometry gating in tumor and adjacent normal and freq

Populations of PD1+CD39+ exhausted CD8 cells, Tregs, and CD11B+CD163+ m

sentative plots showing two distinct NK cell phenotypes and three monocytic su

(B) UMAP projection, clustering, and heatmap by flow cytometry proteins profile

(C) UMAP and clustering by scRNA-seq gene-expression subset to the proteins

(D) UMAP and clustering by scRNA-seq VIPER inference subset to the proteins

(E) UMAP and clustering by flow cytometry proteins profiled in CyTEK myeloid p

(F) UMAP and clustering by scRNA-seq gene expression, subset to the proteins

(G) UMAP and clustering by scRNA-seq VIPER inference, subset to the proteins

See also Figure S5.
test this, we performed unsupervised clustering of the flow cy-

tometry dataset, using the Resolution-Optimized Louvain cluster

analysis algorithm by which we infer expression and activity-

based clusters. Based on the lymphoid panel, the analysis iden-

tified four distinct clusters: CD4 and CD8 T cells, myeloid cells,

and B cells (Figure 3B) while themyeloid panel yielded 6 clusters:

lymphoid cells, B cells, 3 monocyte cell types characterized as

CD14+/CD16+, CD14+/CD16–, and CD14–/CD16+, respectively,

and a macrophage cluster only represented in the tumor

compartment, with relative overexpression of CD86, CD1D,

CD16, CD163, CD169, CD56, CXCR2, CD14, and CD33 proteins

(Figure 3E).

To assess whether scRNA-seq data could recapitulate these

findings, we restricted unsupervised cluster analysis to genes

encoding for proteins represented in the flow cytometry panels

(Figures 3C and 3F). This analysis failed to reveal biologically

relevant clusters due to high gene dropout rates, even on

markers that should be highly expressed. Indeed, expression

of the genes encoding for the 19 lymphoid and 19 myeloid pro-

teins was too noisy and sparse to support cluster inference

consistent with established cell types. This result emphasizes

the extremely noisy nature of scRNA-seq measurements when

restricted to specific genes of interest.

We next tested whether analysis of VIPER-inferred activity for

lymphoid and myeloid markers could recapitulate meaningful

cell types. As shown in Figure 3D, the vast majority of proteins

in the lymphoid flow cytometry panel were well resolved by

VIPER, with the exceptions of PTGDR2, FCGR3B, and NT5E.

Similarly, the majority of the proteins in the myeloid flow panel

were also well resolved by VIPER, with the exception of

FCGR3B and CD33 (Figure 3G). Taken together, 34 of 39 pro-

teins (77%) were well represented by VIPER, consistent with

the 70%–80% previously reported recovery in protein activity

measurements (Alvarez et al., 2016). This was even more

remarkable because the panel analyzed here included mostly

surface markers not directly involved in transcriptional regula-

tion, with a few exceptions (e.g., FOXP3).

Protein activity analysis restricted to the lymphoid panel was

effective in recovering lymphoid cell diversity and was able to

distinguish monocytes from macrophages despite limited

profiling of macrophage lineage markers by the lymphoid panel

(Figure 3D), thus comparing favorably with analysis of flow cy-

tometry data, which only identified 4 of these 7 cell types. For

instance, protein activity analysis was effective in identifying

Tregs, which were missed by flow-based clustering due to low

intensity of FOXP3 staining. Comparing protein abundance

and activity in matched flow-cytometry and VIPER clusters
n by gene expression

uency plots in tumor and adjacent normal for all manually gated populations.

acrophages are of higher frequency in tumor than adjacent normal. Repre-

b-phenotypes, consistent with Figure 1B.

d in CyTEK lymphoid panel.

profiled in (B), showing noise-induced decrease in clustering resolution.

profiled in (B).

anel.

profiled in (E).

profiled in (E).
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(e.g., CD4 T cells), the reproducibility of activity datawas approx-

imately 2-fold higher, on average, based on coefficient of varia-

tion (CV) analysis, defined as the ratio of the standard deviation

over the mean. When averaged over the top proteins differen-

tially represented in the CD4 and CD8 T cell clusters, flow-based

analysis produced CVCD4 = 0.206 and CVCD8 = 0.209, while ac-

tivity-based analysis yielded CVCD4 = 0.151 and CVCD8 = 0.124,

reflecting higher noise in antibody-based measurements.

These findings were validated in a public CITE sequencing

(CITE-seq) dataset profiling antibody staining and gene expres-

sion simultaneously in single cells derived from cord blood

(Stoeckius et al., 2017). Here, clustering by antibody profile

was lost by single-cell gene expression but was completely

recovered by VIPER analysis (Figure S5A). Moreover, the cell-

matched coefficient of variation within each cluster was signifi-

cantly lower for VIPER-inferred protein activity as compared to

gene expression (p = 0.0004) and compared favorably with anti-

body-based measurements (p = 0.0083) (Figure S5B). As above,

VIPER-measured protein activity correlated more closely with

antibody staining than did gene expression (Figures S5C–S5E).

Taken together, these results show that protein activity-based

analyses can recapitulate cell-type identification based on pro-

tein-level data derived by flow cytometry even from a relatively

restricted set of marker proteins, suggesting that such analyses

effectively mitigate the gene dropout inherent in scRNA-seq.

Protein activity in CD45– cells distinguishes tumor cells
from adjacent normal epithelium
We next compared expression and activity-based clustering of

non-hematopoietic (CD45–) ccRCCTMEcells. Expression-based

clustering of CD45– cells from all patients (including tumor and

adjacent normal) revealed four predominant cell types: epithelial

cells, endothelial cells, fibroblasts, and M2 macrophages (Fig-

ure 4A). These populations showed differential representation in

tumor versus adjacent normal, with M2 macrophages predomi-

nant in adjacent normal (pM2 = 0.007), and fibroblasts and epithe-

lial cells over-represented in tumor tissue (pFB = 0.009, pEpi =

0.0005). The epithelial cluster, mostly composed of tumor cells,

showed tumor compartment specificity as compared to adjacent

normal. As expected, it was more highly represented in patients

with pT3a compared to pT1a disease (pEpi|pT3-pT1 = 0.011) (Fig-

ure 4E). The 5most upregulated genes for each cluster are shown

in Figure 4C. Of note, epithelial cells overexpressed SERPINA1, a

protease inhibitor upregulated inmultiple cancer types, aswell as

CD24, recently described as a macrophage immune checkpoint

protein (Barkal et al., 2019), whose expression is associated

with worse prognosis in ccRCC (Arik et al., 2017). Additionally,
Figure 4. Deep profiling of CD45– cells by gene expression and protein

(A) UMAP of single-cell gene expression pooled across all CD45– samples, cluster

(B) UMAP of VIPER-inferred protein activity pooled across all CD45– samples, clu

(C) Heatmap of top5 differentially upregulated genes for each cluster by expressio

shows cluster identity with cell type inferred by SingleR and tumor (red) or adjac

(D) Heatmap of top5 differentially upregulated proteins for each cluster by VIPER

(E) Bar plots of patient-by-patient cluster frequency in tumor minus frequency in a

(blue) indicate higher frequency in adjacent normal, values greater < 0 (red) indic

(F) Bar plots of patient-by-patient cluster frequency in tumor minus frequency in

See also Figures S2 and S3.
the epithelial cluster showed upregulation of keratin 16 (KRT16)

and 8 (KRT8), which have also been associated with poor prog-

nosis in ccRCC (Tan et al., 2017).

VIPER was equally successful in identifying fibroblast, endo-

thelial, and M2 macrophage clusters, while revealing a deeper

level of heterogeneity. Specifically, epithelial cells stratified into

four distinct clusters (Figure 4B). While clusters E1, E3, and E4

were more represented in the tumor as compared to adjacent

non-tumor (pE1 = 0.001, pE3 = 0.056, pE4 = 0.028), cluster E2

was more represented in adjacent normal (pE2 = 0.312) (Fig-

ure 4E). This population represents normal epithelial cells, whose

gene expression was not sufficiently distinct from tumor cells to

be effectively stratified without VIPER. For visualization pur-

poses, we show the 5 most differentially active proteins for

each cluster (Figure 4D).

Further analyses showed that cluster E1—the most prevalent

among the four epithelial clusters—was significantly over-repre-

sented in stage 3 tumors as compared to stage 1 tumors (pE1|

S3:S1 = 0.018), while lower-frequency populations E2, E3, and

E4 were represented in both stage 1 and stage 3 patients. This

analysis suggests that differential frequency of a dominant

epithelial cell population whose transcriptional state is virtually

identical across patients effectively stratifies stage 1 versus

stage 3 tumors (Figures 4E and 4F). These data are relevant

because transcriptionally distinct tumor cell subpopulations

may have differential drug sensitivity and because protein activ-

ity-based analysis but not gene expression allowed distinct iden-

tification of normal versus tumor-related cells.

Inferred tumor-cell copy-number alterations are
characteristic of ccRCC
To further understand the epithelial cell clusters, we assessed VI-

PER-inferred activity of PAX8, PAX2, and CAIX, proteins ex-

pressed in renal epithelium; these are upregulated in malignancy

and commonly used as markers for ccRCC (Farber et al., 2017).

This analysis confirmed increased activity of these markers in

epithelial clusters E1, E3, and E4 (Figure 5A). To more precisely

determine which epithelial clusters represent tumor cells, we

performed copy-number alteration (CNA) inference clustered

by expression-based (Figure 5B) or activity-based (Figure 5C)

analysis (Tickle et al., 2019). We inferred CNAs for each CD45

negative cell, using CD45 positive cells as normal ploidy con-

trols. The results (Figure 5C) showed that aberrant CNA regions

are present in epithelial clusters E1, E3, and E4 but not E2,

including recurrent 3p chromosomal deletions not detected in

any other cell type. Of note, chromosome 3p deletions occur in

>96% of all ccRCC patients, as that region contains the VHL
activity distinguishes tumor cells from normal epithelium

s labeled by cell type. Bottom plot is split by tumor versus adjacent normal label.

sters labeled by cell type. Bottom plot is split by tumor versus adjacent normal.

n; each row represents a gene and each column represents a cell. The legend

ent normal (blue).

-inferred activity. Legend is as in (C).

djacent normal for each gene-expression cluster, grouped by stage; values <0

ate higher frequency in tumor.

adjacent normal for each VIPER cluster, grouped by stage, as in (E).
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tumor suppressor locus (Hsieh et al., 2018). The epithelial cluster

inferred by expression-based analysis included cells lacking

gross copy-number alterations (highlighted in Figure 5B), corre-

sponding exactly to activity-based cluster E2 (Figure 5C).

Dissecting receptor-ligand interactions in ccRCC
A critical challenge that may benefit from VIPER-based protein

activity measurements is the elucidation of cross-compartment

interactions that may modulate tumor homeostasis. The exten-

sive scRNA-seq dataset generated by these studies, which

included data from both hematopoietic and non-hematopoietic

cells, supported in silico interrogation of putative receptor/

ligand interactions between cell types. To that end, we identi-

fied overexpressed genes encoding for secreted ligands and

differential VIPER activity of their cognate binding receptors be-

tween all possible subpopulation pairs and across patients.

Referencing a curated public database of 2,557 known recep-

tor-ligand interaction pairs (Lizio et al., 2019), we identified inter-

actions supported by significant overexpression of the ligand in

any cell population and concomitant activation of the cognate

receptor by VIPER in any patient-matched subpopulation. A to-

tal of 276 candidate receptor-ligand pairs were identified (Table

S4). Of these, several had been previously established in

ccRCC. For example, we identified receptor/ligand pair KDR/

VEGFA in tumor cells and endothelial cells, respectively. Fig-

ure 5D shows a curated subset of predicted receptor/ligand in-

teractions between tumor cells and tumor-enriched immune

populations (T cells and macrophages). Of these, the potential

interaction between CD70 and its cognate receptor CD27, in tu-

mor and CD8 T cells, respectively, is of interest, given ongoing

investigation of CD70 as a therapeutic target (Jacobs et al.,

2015). The majority of interactions thus identified were not pre-

viously reported, providing a systematic resource for future

studies.

A tumor-specific macrophage signature is associated
with disease recurrence
As above, protein activity analysis identified a novel, tumor-spe-

cific subpopulation of macrophages and their top differentially

active proteins (i.e., LILRB5, APOE, and TREM2) and differen-

tially expressed genes (i.e., C1QA-C, APOE, and TREM2) (Table

S2). To assess the clinical significance of this population, we

leveraged single-cell ARACNe networks to transform bulk

RNA-seq data from two independent cohorts (n = 8 and n =

157) using VIPER. Here, gene expression of each cohort was

scaled by the mean and standard deviation of each gene and
Figure 5. Tumor cell labeling is validated by copy-number inference an

(A) Violin plots of VIPER-inferred activity for ccRCC tumor markers PAX2, PAX8, an

epithelial cells.

(B) CNA inference for all CD45– populations, using CD45+ cells as reference. Co

gene-expression cluster, with a subset of copy-number-normal epithelial cells h

(C) CNA inference re-grouped by VIPER cluster. Epithelial cell clusters 1, 3, and

epithelial cluster 2, highlighted in green, is grossly copy-number normal.

(D) Table of known receptor-ligand interaction pairs in which ligand is significan

upregulated by VIPER in another. Subset to interactions inferred between tumor

tumor cells.

(E) Visualization of receptor-ligand interaction pairs shown in (D).

See also Figure S7.
VIPER was applied. We defined a set of statistically upregulated

proteins (p < 0.05) in the tumor-specific macrophage population,

and computed normalized enrichment score (NES) of this gene

set in the ranked differential protein activity signature of patients

with post-surgical disease recurrence compared to those

without recurrence. This analysis was first performed in a small

(n = 8), well clinically annotated cohort of bulk RNA-seq samples

from untreated ccRCC surgical resections; here, we found a sig-

nificant enrichment of tumor macrophage signature in 4 patients

with recurrence compared to 4 age- and stage-matched con-

trols (Figure 6A) (normalized enrichment score [NES] = 4.08,

p = 4.5 3 10�5). We found that the leading-edge proteins

included marker proteins APOE and TREM2, as well as other

macrophage-associated proteins of potential clinical interest,

such as LILRB5, MERTK, and IGF1 (Figure 6C). Sample-by-sam-

ple NES of the tumor macrophage gene set was computed

directly on the ranked VIPER activity of proteins in each bulk

RNA-seq sample and was consistent with the group-wise anal-

ysis in Figure 6A, such that all non-recurrent patients had signif-

icant depletion of tumor macrophage markers and recurrent

patients had strong enrichment, with the sole exception of a sin-

gle patient who recurred late (82months post initial surgery) (Fig-

ure 6D). To further explore this clinical association, we performed

univariate Cox regression of NES versus time to recurrence (TTR)

on a patient-by-patient basis (p = 0.057). Binary log-rank test of

macrophage enrichment, with NES > 0 = ‘‘high’’ and NES % 0 =

‘‘low,’’ showed a strong statistically significant association be-

tween signature enrichment and shorter time-to-recurrence

(p = 6.7 3 10�3) despite a relatively small sample size, suggest-

ing a strong effect (Figure 6B). To validate the association of

markers representative of this rare population with recurrence,

we next measured their enrichment in a larger cohort of bulk

RNA-seq samples from 157 treatment-naive ccRCC surgical re-

sections, annotated with time to post-surgical recurrence. This

validation cohort showed a consistent upregulation of tumor

macrophage markers in patients with post-surgical recurrence

(Figure 6E) (NES = 4.33, p = 1.5 3 10�5), with a significant cox

regression p value of 0.012 and binarized log-rank p value of

0.0029 (Figure 6F).

C1Q/TREM2-expressing macrophages are tumor
restricted and associated with post-surgical recurrence
We next queried whether markers of themacrophage population

associated with poor outcomewere co-expressed in cells by Im-

muno-fluorescence staining and analyzed their spatial localiza-

tion to determine whether these markers were tumor, T cell, or
d tumor marker expression

d CA9. Plots grouped by CD45– cluster label revealing increased expression in

lumns represent chromosomal regions and rows represent cells, grouped by

ighlighted in green.

4 contain consistent chromosome 3p deletions characteristic of ccRCC, while

tly upregulated by gene expression in one cluster and receptor is significantly

cells and T cells, or between APOE+/TREM2+/C1Q+ tumor macrophages and

Cell 184, 1–18, May 27, 2021 11



Figure 6. Enrichment of tumor-specific macrophage markers defined from single-cell RNA-seq in bulk RNA-seq data is associated with

shorter time to recurrence

(A) Gene set enrichment analysis (GSEA) of tumor-specific macrophage marker proteins in VIPER-transformed bulkRNA-seq data from 4 patients with post-

surgical recurrence versus 4 without. Proteins were ranked by the fold change in recurrence versus no recurrence; the p value was computed by GSEA versus

gene shuffling the null model with 1,000 permutations. Note enrichment in patients with recurrence (NES = 4.08, p = 4.5*10�5).

(legend continued on next page)
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macrophage related. We specifically interrogated C1Q, APOE,

and TREM2, as the latter two were identified as protein activity

markers strongly associated with clinical outcome (Figure 6C)

and C1Q was highly overexpressed but could only be identified

following VIPER clustering of the single-cell data. For these

studies, we developed a fluorescence-based panel that included

the three markers, as well as subpopulation-specific markers

CA9 (tumor cells), CD3 (T cells), and CD69/CD163 (pan-macro-

phage) (Figure 7A). Using this panel, we stained each of the 11

samples interrogated by scRNA-seq and quantified expression

in multiple segments of tumor and adjacent non-tumor tissue.

Both C1Q and TREM2 were strongly enriched in macrophages

across all samples (Figure 7B).

To determine which macrophage populations were compara-

tively tumor restricted, we tested the representation of cells co-

staining for C1Q, TREM2, and CD68/CD163 within tumor stroma

versus adjacent normal. In contrast to total CD68/CD163macro-

phages, and as predicted by VIPER analysis, C1Q+ and TREM2+

macrophages were significantly tumor restricted, while the dou-

ble-positive population (C1Q+, TREM2+) appeared to be almost

completely exclusive to tumor tissue (Figure 7C). Furthermore,

these C1Q+/TREM2+/APOE+ macrophages were localized

more closely to tumor cells than control macrophages (C1Q–TR

EM2–APOE–) with a relative distance to the nearest CA9+ cell of

15.25 um versus 23.28 um, p = 1.7 3 10�14, respectively. The

strong tumor restriction of this population did not appear to

correlate with tumor stage (Figure 7D). To further assess for as-

sociation with disease recurrence, we stained the samples from

the same dataset we had used for initial bulk RNA-seq studies

(Figures 6A–6D). These samples showed that both TREM2 and

C1Q were significantly enriched in the tumor stroma of patients

with disease recurrence as compared to patients without recur-

rence (Figure 7E) (pC1Q = 0.047, pTREM2 = 0.038, pC1Q/TREM2 =

0.009). C1Q+ macrophages, in particular, were significantly

associated with disease recurrence (p = 0.028). These data sug-

gest that assessment of intra-tumoral C1Q+macrophage density

by IF (Figure S6) may provide a useful prognostic biomarker for

recurrence. We explored this hypothesis by first calculating a

cutoff for C1Q macrophage frequency that maximized the log-

rank statistic, and next performing log-rank regression (Fig-

ure 7F). A C1Q+ macrophage frequency threshold of 0.01 signif-

icantly separated patients with post-surgical recurrence from

those without recurrence, with a log-rank p value of 6.7 3 10�3

and area under the curve (AUC) of 0.9375. These data recapitu-

lated the disease recurrence Kaplan-Meier curve defined by

gene set enrichment analysis (GSEA) analysis (Figure 6B) and

independently support the association of tumor-infiltrating

macrophage density with post-surgical recurrence, highlighting

a strong consistency between IF staining and scRNA-seq

analysis.
(B) Kaplan-Meier curve of sample-by-sample tumor-specific macrophage GSE

enrichment, blue line indicates patients with high enrichment. Log-rank p value =

(C) Heatmap of leading-edge protein set from (A).

(D) Sample-by-sample tumormacrophageGSEA, annotatedwith each sample’s r

ranked by inferred activity.

(E) Macrophage signature GSEA in recurrence versus no recurrence in validation

(F) Kaplan-Meier curve of sample-by-sample GSEA in association with time to re
DISCUSSION

We report a systematic single-cell analysis of the cell popula-

tions that comprise the immune and non-immune compartments

of clear cell renal cell carcinoma (ccRCC), from >200,000 cells

representing tumor and adjacent normal tissue from 11 patients,

with either stage 1 or stage 3 disease. By incorporating both

transcriptomic and VIPER-based proteomic data, our analysis

characterizes subpopulations, key regulatory proteins, and

candidate ligand/receptor-mediated interactions, providing a

previously unavailable window into the microenvironment

of ccRCC.

These studies provide insight that could only be gleaned using

our comprehensive VIPER-based scRNA-seq protein activity

analysis pipeline. In particular, key tumor-specific populations,

comprising both immune and non-immune cells, and their estab-

lished lineage markers were missed by expression-based cluster

analysis andbyflowcytometry, due to significant genedropout ef-

fects,a limitedsetof antibodies, andmeasurement reproducibility.

By contrast, activity-based analyses provided high-resolution

sub-structure and revealed a novel tumor-specific macrophage

population prognostic for recurrence.

To confirm that activity-based analysis tracked protein

expression (quantified using flow cytometry and IF), we per-

formed a comprehensive validation of VIPER results using

high-parameter spectral flow cytometry. Our results show that

VIPER-based analyses may potentially outperform antibody-

based measurements in terms of both detection and reproduc-

ibility, while providing quantitative activity assessment for

>6,000 proteins in a single experiment. By contrast, gene-

expression-based analyses of scRNA-seq data could not reca-

pitulate flow cytometry results, due to significant gene dropout

effects. Thus, a key novel finding of this study is feasibility, accu-

racy, and reproducibility of network-based protein activity infer-

ence from single-cell gene-expression profile data.

Importantly, activity-based analyses identified several known

immune checkpoint and master regulatory proteins missed by

gene-expression analysis alone. In exhausted CD8 T cells, for

instance, these included LAG-3, PD-1, and CTLA-4, while, in

Tregs, they included FOXP3 and CTLA-4. Thus, the full set of

differentially active regulatory proteins reported in Table S2 rep-

resents a previously unavailable resource for the study of these

cell types. Analysis of both hematopoietic and non-hematopoiet-

ic cells allowed us to study the interaction between tumor-

related cells and immune subpopulations in the TME, especially

with respect to tumor-infiltrating macrophages. Inference of in-

teractions among established receptor-ligand pairs (Lizio et al.,

2019) identified >200 ligand/receptor-mediated cell-cell interac-

tions, which were consistently yet independently detected

across all patients (Table S4). Among multiple potentially
A associated with time to recurrence, yellow line indicates patients with low

0.0067.

ecurrence status and time to recurrence or total observation time. Proteins were

cohort (N = 157).

currence in the validation cohort, log-rank p value = 0.0029.
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significant interactions identified (Figure S7), we highlight CD70,

localized to the surface of tumor cells, interacting with its

cognate ligand, CD27, on tumor-infiltrating T cells. CD70 is ex-

pressed in many solid tumors, including RCC (Jilaveanu et al.,

2012), and may facilitate tumor cell escape by inducing tumor

cell proliferation and survival (Jacobs et al., 2015); these data

establish it as a potential therapeutic target in ccRCC.

In terms of potential clinical relevance, activity-based analysis

identified a tumor-specific macrophage subpopulation charac-

terized by upregulation of C1Q, APOE, and TREM2 and high ac-

tivity of the LILRB5 protein (Figures 1 and 2). This subpopulation

was consistently detected in all tumors, and GSEA analysis of its

single-cell RNA-seq protein signature in independent bulk RNA-

seq profiles revealed its significant association with shorter time

to post-surgical recurrence. These findings were confirmed in a

validation cohort of 157 patients (Figure 6). Of note, the VIPER-

based test to measure activity of these proteins in patients,

based on their tumor’s mRNA profile (OncoTarget) (Zeleke

et al., 2020), recently received CLIA certification by the New

York and California departments of health (Alvarez et al., 2018;

Alvarez and Califano, 2018).

Protein-level qmIF confirmed the clinical significance of C1Q+

tumor-specific macrophages and recapitulated association with

shorter time to post-surgical recurrence identified at the transcrip-

tional level (Figure 7F). Though the functional role of these tumor-

specific macrophages is currently unknown, a recent study in pri-

mary renal tumors also found that high density of C1Q-expressing

cells correlates with poor prognosis (Roumenina et al., 2019)

although that study did not characterize these findings at the sin-

gle-cell level or report their tumor specificity and interaction with

tumor cells. Functionally, complement-deficient mice developed

high densities of C1Q expressing macrophages with concurrent

upregulation of immune checkpoints PD-1, LAG-3, and PD-L1.

These orthogonal data are consistent with our observations in hu-

man single-cell data, as we documented a C1Q-expressing tu-

mor-specific macrophage population and a high frequency of

likely exhausted LAG-3+ PD-1+ T cells in the ccRCC TME.

Our studies also highlighted APOE and TREM2—a member of

the immunoglobulin superfamily that plays an important immuno-

modulatory role in the regulation of inflammatory processes (Ram-

irez et al., 2015; Roussos et al., 2015) and enhances tumor prolif-

eration (Wang et al., 2016; Yaoet al., 2016). The role of the TREM2-
Figure 7. A novel population of C1Q/TREM2+ macrophages are tu

immunohistochemistry

(A) Representative IHC images for each marker in tumor stroma versus adjacent n

to tumor-adjacent (CA9–) regions.

(B) Odds ratios (OR) across samples of tumor-specific macrophage markers C1Q

CD68/CD163– non-macrophage cells; note association of C1Q and TREM2 with m

and TREM2 co-staining with CD68/CD163 is statistically significant by Fisher’s e

(C) Frequency by IHC of C1Q+ or TREM2+ macrophages in tumor stroma ver

Enrichment in tumor compared to adjacent normal assessed by paired Wilcox te

(D) Frequency of C1Q+TREM2+CD68/CD163+ macrophages in tumor versus ad

CD163+ cells were present in adjacent normal.

(E) Frequency of C1Q+ or TREM2+macrophages in tumor stroma of patients with o

Figures 6A–6D. Higher frequency in patients with recurrence assessed by unpair

(F) Kaplan-Meier plot of C1Q+CD68/CD163+ frequency in association with time

binarized by log-rank maximization to >0.01 = ‘‘high’’ and <0.01 = ‘‘low.’’

See also Figure S6.
ApoEpathway in RCC tumor biology has not been fully explored. A

recent study profiling a murine ccRCC model using scRNA-seq in

conjunction with intracellular proteomic staining identified a popu-

lation of TREM2+ tumor-infiltrating macrophages, which appears

to be phenotypically similar to the populationwe discovered in pa-

tients (Katzenelenbogen et al., 2020). Functional studies showed

that co-culture ofCD8Tcellswith thesemacrophagessignificantly

impeded T cell proliferation, and that TREM2 knockdown led to

favorable pre-clinical outcomes.

In conclusion, we report the development and application of a

novel and broadly generalizable scRNA-seq analytic pipeline,

which complements gene expression with inferred protein activ-

ity to comprehensively dissect the repertoire of subpopulations

in the TME. While our analysis focused on treatment-naive clear

cell renal carcinoma, our validation with proteins concurrently

profiled by flow cytometry suggests that this approach could

be effectively applied to any tumor of interest and potentially to

other tissue-based studies. Our scRNA-seq data are limited by

the relatively small number of cases, but it should be noted

that we cumulatively profiled > 200,000 cells with high data qual-

ity (Table S1) and that the populations identified were remarkably

consistent across patients (Figure S2), suggesting that additional

patients would not dramatically affect the conclusions of the

study. Enrichment of single-cell signatures in bulk data and

qmIF studies showed strong and statistically significant associ-

ation between tumor infiltration by a C1Q-expressing macro-

phage subpopulation and disease recurrence. One implication

of these findings is that ccRCC patients with an increased den-

sity of C1Q-expressing macrophages in the tumor stroma at

baseline might be at increased risk of post-surgical disease

recurrence and thus may be suitable candidates for adjuvant

therapy or more aggressive neoadjuvant approaches in the

context of clinical trials. A more intriguing possibility is that these

cells could be causal of (rather than associated with) recurrence;

hence, targeting their top master regulators and/or proteomic

markers could be of clinical value in ccRCC.

Limitations of the study
Consistent with prior results, we found that recovery rates for

protein activity inference using this analysis pipeline were in

the 70%–80% range, i.e., 20%–30% of differentially active pro-

teins may be missed. Although this compares favorably with
mor specific and associated with shorter time to recurrence by

ormal. Note high C1Q/TREM2/APOE staining within CA9+ tumor as compared

, TREM2, and APOE co-staining with CD68/CD163+ macrophage cells versus

acrophage markers. Dotted red line represents OR = 1. Individual OR for C1Q

xact test (p < 0.01).

sus adjacent normal across the 11 patient samples profiled by scRNA-seq.

st, *p < 0.05, **p < 0.01.

jacent normal, plotted by stage (pT1a versus pT3b). No C1Q+TREM2+CD68/

r without post-surgical recurrence, from the cohort profiled by bulkRNA-seq in

ed Wilcox test, *p < 0.05.

to recurrence. Log-rank p value = 0.0067, with sample-by-sample frequency

Cell 184, 1–18, May 27, 2021 15



ll

Please cite this article in press as: Obradovic et al., Single-cell protein activity analysis identifies recurrence-associated renal tumor macro-
phages, Cell (2021), https://doi.org/10.1016/j.cell.2021.04.038

Article
gene expression, where >80%–90% of genes may be unde-

tected, we expect that future studies aimed at improving the

population-specific reporter assays used to infer protein activity

by VIPER will address these limitations.
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Antibodies

Mouse anti-Human CD45 Qdot 800,

clone HI30

Thermo Fisher Scientific Cat#Q10156; RRID:AB_1500477

Mouse anti-Human CD19 BB515,

clone HIB19

BD Biosciences Cat#564456

Anti-Human CD45RA FITC, clone HI100 BioLegend Cat#304148; RRID:AB_2564157

Anti-Human FoxP3 PE, clone 236A/E7 Thermo Fisher Scientific Cat#12-4777-42

Mouse anti-Human PD-1 PE-Dazzle/594,

clone EH12.2H7

BioLegend Cat#329939

Mouse anti-Human CD127 PE-Cy5, clone

A019D5

BioLegend Cat#351525

Mouse anti-Human CD38 PerCP,

clone HIT2

BioLegend Cat#303519; RRID:AB_893315

Mouse anti-Human CD39 PerCP-Cy5.5,

clone A1

BioLegend Cat#328218

Anti-Human CD25 Pe-Cy7, clone BC96 BioLegend Cat#302611

Mouse anti-Human CD14 APC, clone 63D3 BioLegend Cat#367118; RRID:AB_2566792

Anti-Human CTLA-4 Alexa 647,

clone L3D10

BioLegend Cat#349920; RRID:AB_2566185

Mouse anti-CD3 Alexa 700,

clone HIT3a

BioLegend Cat#300324; RRID:AB_493739

Anti-Human CD73 APC-Cy7, clone AD2 BioLegend Cat#344021

Anti-Human CXCR3 BV421, clone G025H7 BioLegend Cat#353715; RRID:AB_11124720

Anti-Human CD8 Pacific Blue, clone SK1 BioLegend Cat#344718

Mouse anti-Human CD4 BV480, clone SK3 BD Biosciences Cat#566104

Anti-Human CD16 BV570, clone 3G8 BioLegend Cat#302035; RRID:AB_10915988

Anti-Human CRTH2 BV605, clone BM16 BioLegend Cat#350121; RRID:AB_2566759

Mouse anti-Human HLA-DR BV650,

clone L243

BioLegend Cat#307649; RRID:AB_2562544

Mouse anti-Human CD161 BV711,

clone DX12

BD Biosciences Cat#563865

Mouse anti-Human CD56 BV750,

clone 5.1H11

BioLegend Cat#362555; RRID:AB_2734396

Anti-Human CCR7 BV785, clone G043H7 BioLegend Cat#353230; RRID:AB_2563630

Mouse anti-Human CD86 FITC, clone BU63 BioLegend Cat#374203; RRID:AB_2721573

Anti-Human CD14 Alexa 532, clone 61D3 Thermo Fisher Cat#58-0149-41

Anti-Human CD141 PE, clone M80 BioLegend Cat#344103; RRID:AB_1877220

Mouse anti-Human PD-L1 PE-Dazzle/594,

clone 29E.2A3

BioLegend Cat#329731

Anti-Human CD11b PE-Cy5, clone ICRF44 BioLegend Cat#301307

Mouse anti-Human CXCR2 PerCP-Cy5.5,

clone 538/CXCR2

BioLegend Cat#320717

Anti-Human CD204 PE-Cy7, clone PSL204 Thermo Fisher Scientific Cat#25-2045-42

Mouse anti-Human CD68 APC, clone

Y1/82A

BioLegend Cat#333809; RRID:AB_10567107
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Anti-Human CD206 APC/Fire 750, clone

15-2

BioLegend Cat#321133

Mouse anti-Human CD1c BV421,

clone L161

BioLegend Cat#331525; RRID:AB_10933249

Anti-Human CD123 Pacific Blue, clone 6H6 BioLegend Cat#306043

Mouse anti-Human CD163 BV480, clone

GHI/61

BD Biosciences Cat#746549

Mouse anti-Human CD169 BV605, clone

7-239

BioLegend Cat#346009; RRID:AB_2721538

Anti-Human CD33 BV711, clone P67.6 BioLegend Cat#366623; RRID:AB_2721556

Mouse anti-Human HLA-ABC BV786, clone

G46-2.6

BD Biosciences Cat#740982

Mouse anti-Human CD81 PE-Cy7,

clone 5A6

BioLegend Cat#349511

Mouse anti-Human CD74 PE, clone LN2 BioLegend Cat# 326807; RRID:AB_2229059

Mouse anti-Human HLA-DR Alexa 700,

clone L243

BioLegend Cat# 307625; RRID:AB_493770

Mouse anti-Human CD169 APC, clone

7-239

BioLegend Cat# 346007; RRID:AB_11150773

Mouse anti-Human CD68 PE, clone Y1/82A BioLegend Cat# 333807

Mouse anti-Human CD206 BV785, clone

15-2

BioLegend Cat# 321141; RRID:AB_2734301

Mouse anti-Human CD45 BV605,

clone HI30

BioLegend Cat# 304041; RRID:AB_2562105

Rabbit anti-human TREM2, clone D8I4C Cell Signaling Technologies Cat# 91068S

Mouse anti-human C1q, clone C1QA/2956 AbCam Cat# ab268120

Mouse anti-human CD3, clone LN10 Leica Biosystems Cat# NCL-L-CD3-565

Rabbit anti-human ApoE, clone D17N Cell Signaling Technologies Cat# 13366S

Rabbit anti-human CA-9, polyclonal AbCam Cat# ab15086

Mouse anti-human CD68, clone KP1 BioGeneX Cat# AM416-5M

Mouse anti-human CD163, clone 10D6 AbCam Cat# ab74604

Human TruStain FcX BioLegend Cat#422302

eBioscience FoxP3/Transcription Factor

Staining Buffer Set

Thermo Fisher Scientific Cat# 00-5523-00

GIBCO Fetal Bovine Serum, Certified, Heat

Inactivated

Thermo Fisher Scientific Cat#10-082-147

Bovine Serum Albumin Sigma Cat#A9647-100 g

GIBCO DPBS (1x) Thermo Fisher Scientific Cat#14190-144

Biological samples

Untreated ccRCC Tumor and Adjacent

Normal Tissue: Fresh Samples

Columbia University Irving Medical Center N/A

Untreated ccRCC Tumor FFPE tissue Columbia University Irving Medical Center N/A

Untreated ccRCC Tumor FFPE tissue Vanderbilt University Medical Center N/A

Critical commercial assays

Miltenyi Mouse Tumor Dissociation Kit Miltenyi Biotec Cat#130-096-730; RRID:SCR_020285

10x Genomics Chromium Single Cell 30

Reagent Kit

10X Genomics N/A

Opal-7-color multiplex IHC kit Akoya Biosciences SKU NEL811001KT
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Deposited data

Raw and Analyzed data used to generate

analyses shown in this Manuscript:

scRNASeq, bulkRNASeq, qmIF, cyTEK

spectral flow cytometry

This Manuscript Available onMendeley at https://dx.doi.org/

10.17632/nc9bc8dn4m.1 And Github at

https://github.com/Aleksobrad/

single-cell-rcc-pipeline

Software and algorithms

FlowJo v10.6.2 BD Biosciences https://www.flowjo.com/

SpectroFlo v2.0 Cytek https://cytekbio.com/

GraphPad Prism v8.4 GraphPad https://www.graphpad.com/

scientific-software/prism/

InForm Advanced Image Analysis Software

v 2.4.6

Akoya Biosciences https://www.akoyabio.com/phenoptics/

software/inform-tissue-finder/

PhenoChart v 1.0.12 Akoya Biosciences https://akoyabio.helpdocs.com/

phenoptics-software-updates/

phenochart-version-1011

Seurat v3 (Stuart et al., 2019) https://cran.r-project.org/web/packages/

Seurat/index.html

SingleR Aran et al., 2019 https://bioconductor.org/packages/

release/bioc/html/SingleR.html

InferCNV (Tickle et al., 2019) https://github.com/broadinstitute/infercnv

ARACNe Lachmann et al., 2016 https://github.com/califano-lab/

ARACNe-AP

VIPER Alvarez et al., 2016 http://bioconductor.org/packages/release/

bioc/html/viper.html

Resolution-Optimized Louvain Clustering This manuscript https://github.com/Aleksobrad/

single-cell-rcc-pipeline

R Code Used to Generate Figures and

perform analyses shown in this manuscript

This manuscript https://github.com/Aleksobrad/

single-cell-rcc-pipeline

Single-Cell ARACNe & VIPER analysis

pipeline in active development

This manuscript https://github.com/califano-lab/PISCES
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Dr. Charles G. Drake

(cgd2139@columbia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data files and specific code used to perform all analyses in this manuscript are available at https://github.com/Aleksobrad/

single-cell-rcc-pipeline. General pipeline for VIPER analysis of scRNASeq data is available as an actively maintained and updated

R package at https://github.com/califano-lab/PISCES. Source data for all analysis in this study will also be publicly hosted on Men-

deley Data: https://doi.org/10.17632/nc9bc8dn4m.1

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fresh Surgical Tumor Tissue and Matched Adjacent Normal Tissue were obtained from 11 adult patients with clear cell renal carci-

noma undergoing nephrectomy to treat primary, non-metastatic disease, ranging from grade 1 to grade 4 and including 6 patients

with stage pT1a disease and 5 patients with pT3a disease (Table S1). These were dissociated immediately for Single-cell RNASeq

and flow Cytometry analysis. Formalin-Fixed Paraffin-Embedded (FFPE) Pathology samples of the same patient tumors were ob-

tained for follow-up Immunohistochemistry analysis. A separate cohort of FFPE tissue from primary tumor of 11 adult patients also

treated for clear cell renal carcinoma by surgical nephrectomy was curated retrospectively to identify patients who recurred after
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surgery and match them by age and tumor stage to those who didn’t. This cohort was tracked over a period of 5-113 months, during

which time6patients experienceddisease recurrence (between5-82monthsafter surgery) and5patients hadno recurrence (between

35-113months after surgery). We used this cohort for validation of Immunohistochemical analysis, as well as for exploratory profiling

by bulk RNA sequencing and association of markers identified from single-cell profiling with time-to-recurrence. A larger validation

cohort was curated from the Vanderbilt tissue bank, identifying 157 treatment-naive patients with varying follow-up time and annota-

tion of post-surgical disease recurrence and profling them by bulk RNA sequencing. The studies were conducted in accordance with

the guidelines approved by the Institutional Review Board (IRB) protocols, AAAO5706 and AAAA9967, respectively.

METHOD DETAILS

Tissue dissociation
Fresh Tumor or Adjacent Normal tissue were minced to 2-4 mm sized pieces in separate 6-cm dishes and digested to single cell sus-

pension using Multi Tissue Human Tumor Dissociation Kit 1 (Miltenyi Biotec) and a gentleMACS OctoDissociator (Miltenyi Biotec)

according to the manufacturer’s instructions. Dissociated cells from both Tumor and Adjacent Normal tissue were aliquoted for

Flow Cytometry Analysis and single-cell sequencing, with 2-3x106 cells allocated for flow cytometry and the remainder used for sin-

gle-cell sequencing. Cells aliquoted for sequencing were stained for Live/Dead (eBioscience, cat#50-112-9035) and CD45

(BioLegend, cat#368524) and then fluorescence-activated cell sorted (FACS) using BD InfluxTM cell sorter into a Live CD45 positive

population and a Live CD45 negative population, each of which were separately loaded for single-cell RNA sequencing. Boundaries

between positive and negative cell fractions were drawn based on single-color stain. An example gating strategy is shown in Fig-

ure S1. For the first set of three patients processed (Patients A-C), only the sorted CD45-positive population was further processed

for single-cell RNASequencing, and for a second set of eight patients (patients 1-8), both CD45-positive and CD45-negative cells

were processed for single-cell RNASequencing.

Single-cell RNA sequencing
Sorted CD45-positive and CD45-negative samples were processed for single-cell gene expression capture (scRNASeq) using the

10X Chromium 30 Library and Gel Bead Kit (10x Genomics), following the manufacturer’s user guide at the Columbia University Hu-

man ImmuneMonitoring Core (HIMC). After GelBead in-Emulsion reverse transcription (GEM-RT) reaction, 12-15 cycles of polymer-

ase chain reaction (PCR) amplification were performed to obtain cDNAs used for RNaseq library generation. Libraries were prepared

following the manufacturer’s user guide and sequenced on Illumina NovaSeq 6000 Sequencing System. Single-cell RNASeq data

were processed with Cell Ranger software at the Columbia University Single Cell Analysis Core. Illumina base call files were con-

verted to FASTQ files with the command ‘‘cellranger mkfastq.’’ Expression data were processed with ‘‘cellranger count’’ on the

pre-built human reference set of 30,727 genes. Cell Ranger performed default filtering for quality control, and produced for each sam-

ple a barcodes.tsv, genes.tsv, andmatrix.mts file containing counts of transcripts for each sample, such that expression of each gene

is in terms of the number of unique molecular identifiers (UMIs) tagged to cDNA molecules corresponding to that gene. These data

were loaded into the R version 3.6.1 programming environment, where the publicly available Seurat package was used to further

quality-control filter cells to those with fewer than 10% mitochondrial RNA content, more than 1,500 unique UMI counts, and fewer

than 15,000 unique UMI counts. Pooled distribution across all samples of UMI counts, unique gene counts, and percentage of mito-

chondrial DNA after QC-filtering is shown in Figure S1, with total post-filtering cell counts and median UMIs/cell shown for each in-

dividual sample in Table S1.

Single-cell RNA-seq gene expression processing
Gene Expression UMI count matrices for each sample were processed in R using the Seurat SCTransform command to perform a

regularized negative binomial regression based on the 3000most variable genes. Each sample was then individually clustered by the

Resolution-Optimized Louvain Clustering Algorithm described below, and within each cluster metaCells were computed for down-

stream regulatory network inference by summing SCTransform-corrected template counts for the 10 nearest neighbors of each cell

by Pearson correlation distance. Normalized datasets for both Tumor and Adjacent Normal tissue across all patients were combined

separately for CD45-positive and CD45-negative samples using the FindIntegrationAnchors and IntegrateData functions in Seurat,

with the default parameters. The resulting datasets of 102,509 CD45-positive cells from 11 patients and 61,423 CD45-negative cells

from 8 patientswere projected into their first 50 principal components using the RunPCA function in Seurat, and further reduced into a

2-dimensional visualization space using the RunUMAP function with method umap-learn and Pearson correlation as the distance

metric between cells. Differential Gene Expression between clusters was computed by the MAST hurdle model for single-cell

gene expression modeling, as implemented in the Seurat FindAllMarkers command, with log fold change threshold of 0.5 and min-

imum fractional expression threshold of 0.25, indicating that the resulting gene markers for each cluster are restricted to those with

log fold change greater than 0 and non-zero expression in at least 25% of the cells in the cluster.

Resolution-optimized Louvain clustering algorithm
For each clustering step in the analysis, clustering was performed in two steps. The Louvain algorithm as implemented in Seurat uses

the FindNeighbors and FindClusters functions, such that the FindClusters function includes a resolution parameter that allows
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selection of a progressively higher number of clusters as the parameter is increased, which does not control for over-clustering or

allow for objective evaluation of cluster purity. Therefore, clustering was performed with resolution values ranging from 0.01 to 1.0

at intervals of 0.01, and cluster quality was evaluated at each resolution value to select an optimum in this range. For each resolution

value, the clustered cells were subsampled to 1000, and silhouette score was computed for these 1000 cells and their cluster labels.

For gene expression data, Pearson correlation was used as the distance metric in computation of silhouette score, and for VIPER-

inferred protein activity data ViperSimilarity as implemented in the VIPER package was used as the distance metric. This procedure

was repeated for 100 random samples of 1000 cells to compute a mean and standard deviation of average silhouette score at each

resolution value. Examples can be seen plotted in Figure S4. The highest resolution value that maximizes mean silhouette score was

selected as the optimal resolution at which to cluster the data without over-clustering.

Semi-supervised cell type calling
For each single cell gene expression sample, cell-by-cell identification of cell types was performed using the SingleR package and

the preloaded Blueprint-ENCODE reference, which includes normalized expression values for 259 bulk RNASeq samples generated

by Blueprint and ENCODE from 43 distinct cell types representing pure populations of stroma and immune cells (Martens and Stun-

nenberg, 2013; ENCODE Project Consortium, 2012). The SingleR algorithm computer correlation between each individual cell and

each of the 259 reference samples, and then assigns both a label of the cell type with highest average correlation to the individual cell

and a p value computed bywilcox test of correlation to that cell type compared to all other cell types. Projection of cell-by-cell SingleR

labels with p < 0.05 onto the Gene Expression UMAP space is shown in Figure S3, such that localization of SingleR labels is highly

concordant with the unsupervised clustering. Unsupervised Clusters determined by the resolution-optimized Louvain algorithm are

labeled as a particular cell type based on the most-represented SingleR cell type label within that cluster.

Regulatory network inference
From each sample, metaCells were computed within each gene expression cluster by summing SCTransform-corrected template

counts for the 10 nearest neighbors of each cell by Pearson correlation distance. 200metaCells per cluster were sampled to compute

a regulatory network from each cluster in each patient. All regulatory networks were reverse engineered by the ARACNe algorithm.

ARACNe was run with 100 bootstrap iterations using 1785 transcription factors (genes annotated in gene ontology molecular gunc-

tion database as GO:0003700, ‘‘transcription factor activity,’’ or as GO:0003677, ‘‘DNA binding’’ and GO:0030528, ‘‘transcription

regulator activity,’’ or as GO:0003677 and GO:0045449, ‘‘regulation of transcription’’), 668 transcriptional cofactors (a manually

curated list, not overlapping with the transcription factor list, built upon genes annotated as GO:0003712, ‘‘transcription cofactor ac-

tivity,’’ or GO:0030528 or GO:0045449), 3455 signaling pathway related genes (annotated in GO biological process database as

GO:0007165, ‘‘signal transduction’’ and in GOcellular component database asGO:0005622, ‘‘intracellular’’ or GO:0005886, ‘‘plasma

membrane’’), and 3620 surface markers (annotated as GO:0005886 or as GO:0009986, ‘‘cell surface’’). ARACNe is only run on these

gene sets so as to limit protein activity inference to proteins with biologically meaningful downstream regulatory targets, and we do

not apply ARACNe to infer regulatory networks for proteinswith no known signaling or transcriptional activity for which protein activity

may be difficult to biologically interpret. Parameters were set to zero DPI (Data Processing Inequality) tolerance and MI (Mutual In-

formation) p value threshold of 10�8, computed by permuting the original dataset as a null model. Each gene list used to run ARACNe

is available on github, along with the generated patient-by-patient ARACNe tables organized into CD45-positive and CD45-negative

clusters.

Protein activity inference
Protein activity was inferred for CD45-positive cells from each patient by running the metaVIPER algorithm with all CD45-positive

ARACNe networks across all patients on the SCTransform-scaled and Anchor-Integrated gene expression signature of single cells

from each patient. Because the SCTransform-scaled gene expression signature is already normalized, VIPER normalization param-

eter was set to ‘‘none.’’ The resulting patient-by-patient VIPER matrices were combined by sub-setting to the VIPER proteins for

which activity was inferred in each patient sample, resulting in 2,562 proteins with successfully inferred activity across all CD45-pos-

itive patient samples. For CD45-negative single cells, protein activity was inferred by running themetaVIPER algorithmwith all CD45-

negative ARACNe networks across all patients in the same way, and then taking the intersection of 2,667 proteins with successfully

inferred activity across all CD45-negative patient samples. VIPER-Inferred Protein Activity matrices were loaded into a Seurat Object

with CreateSeuratObject, then projected into their first 50 principal components using the RunPCA function in Seurat, and further

reduced into a 2-dimensional visualization space using the RunUMAP function with method umap-learn and Pearson correlation

as the distance metric between cells. Differential Gene Expression between clusters identified by resolution-optimized Louvain

was computed using bootstrapped t test, run with 100 bootstraps, and top proteins for each cluster were ranked by p value.

Copy number inference
Copy Number Alteration (CNA) across CD45-negative cells was inferred from gene expression counts at the single cell level using the

InferCNA package. Cells were clustered according to their unsupervised clustering label by either gene expression or VIPER. At the

first iteration of CNA inference, the entire set of CD45-positive cells was taken as a reference set to infer CNAs shown for each of

the CD45-negative populations (Figure 3).
Cell 184, 1–18.e1–e8, May 27, 2021 e5



ll

Please cite this article in press as: Obradovic et al., Single-cell protein activity analysis identifies recurrence-associated renal tumor macro-
phages, Cell (2021), https://doi.org/10.1016/j.cell.2021.04.038

Article
Flow cytometry data acquisition
From each of the 8 patient samples profiled by single-cell sequencing of both the CD45-positive and CD45-negative cells, an aliquot

of roughly 2x106 cells was taken for staining and high-throughput flow cytometry onCyTEKAurora flow cytometer. Cells were stained

for 10minutes with Zombie NIR dye (1:1000 concentration), then stained with surface antibodies for 30minutes on ice protected from

light. After washing, cells stained with myeloid panel antibodies were run fresh on the cytometer. Cells stained with the lymphoid

panel were fixed with the FoxP3 Fix/Perm kit (ThermoFisher) for at least 30 minutes, then stained with intracellular markers for 30 mi-

nutes on ice protected from light. All antibodies used can be found in Table S10. For both panels, single stain reference controls were

created using UltraComp eBeads (ThermoFisher). Due to poor staining quality in Patient8, samples from this patient were excluded in

downstream analysis of flow cytometry data. Data was evaluated by multi-dimensional analysis in R, and follow-up manual gating

was performed as shown in Figure 2 using FlowJo v10.5.3.

Multi-dimensional analysis of flow cytometry data
Flow cytometry samples from all sampleswere combined and gated on LiveCD45-positive, then the gated .fcs files for both lymphoid

and myeloid antibody panel were separately exported from FlowJo software and analyzed in R with the flowCore and ggcyto pack-

ages. For each panel, raw fluorescence data were normalized with the estimateLogicle and transform functions, and in order to

reduce computational burden of downstream analysis a sampled set of normalized fluorescence data from 250,000 cells were

then loaded into a Seurat object with CreateSeuratObject. Two-dimensional representation of these data was computed by RunU-

MAP and resolution-optimized Louvain clustering was performed. Fluorescence of all markers was visualized in a heatmap, with cells

grouped by cluster. For single-cell sequencing data, the CD45-positive gene expression matrix and VIPER-inferred protein activity

matrix were each subset to genes corresponding to the proteins profiled by flow cytometry, and re-clustered by the resolution-opti-

mized Louvain algorithm. Side by side comparison of the clustering and heatmaps for flow cytometry protein expression, gene

expression, and inferred protein activity are shown in Figure 3.

Receptor-ligand interaction inference
A curated database of 2,557 known receptor-ligand interaction pairs was downloaded from the RIKEN FANTOM5 database. This list

of receptor-ligand pairs was subset to pairs for which the ligand is significantly upregulated by gene expression in at least one VIPER

cluster across patients and the receptor is significantly upregulated by protein activity in at least one VIPER cluster across patients.

This reduced the total set of receptor-ligand pairs detected in our dataset to 276. For each pair we annotate a ligand cell type with

highest median gene expression and a receptor cell type with highest median protein activity. Filtering to interactions involving the

Tumor macrophage cluster and any T cell cluster returns 5 interaction pairs, filtering to interactions involving any Tumor cell clusters

and any T cell cluster returns 5 interaction pairs, and filtering to interactions involving any Tumor cell and the Tumor macrophage

cluster returns 13 interaction pairs. These are shown in Figure 5D.

Staining for multiplex immunohistochemistry
After consulting with a pathologist, patient FFPE tissue blocks with at least 50% tumor were chosen for sectioning on to SuperfrostTM

slides. Representative full section 4 mm slides of tissue specimens were stained for H&E and viewed by the pathologist to determine

areas of tumor, stroma, regression, and immune infiltrates. Each patient’s tissue specimen was then stained using OpalTM 7-color

multiplex IHC kit, according to the manufacturer’s protocol (Akoya Biosciences) with minor modifications. Briefly, the slides were

baked at 60�C for approximately 2 hr before de-paraffinization and retrieval of antigen at pH 9. The slides were then blocked using

3% hydrogen peroxide (in 1X Tris Buffer with 0.05%Tween20), followed by an additional block using the antibody diluent, before

staining with the primary antibodies, which include (in the order of staining) TREM2 (clone-D8I4C, Cell Signaling, cat# 91068S,

1:400, AR9), C1q (clone-C1QA/2956, AbCam, cat#ab268120, 1:100, AR6), CD3 (clone-LN10, Leica, cat#NCL-L-CD3-565,1:100,

AR6), ApoE (clone – D17N, Cell Signaling, cat#13366S, 1:300, AR6), CA9 (polyclonal, AbCam, cat#ab15086, 1:1000, AR9) and

CD68 (clone – KP1, BioGeneX, cat#AM416-5M, RTU, AR6) along with CD163(clone – 10D6, AbCam, cat#ab74604, ready-to-use

(RTU), AR6). For each staining cycle, the slides were first incubated with primary antibody, followed by the secondary HRP-polymer-

ization, and signal amplification using Tyramide conjugated to anOpal fluorophore andmicrowave treated in the AR6 or AR9 buffer as

required by the next round of primary antibody staining. Single color controls for each fluorochrome and an unstained slide were pro-

cessed in the same batch and used to create the library for spectral unmixing.

Multispectral imaging
For each patient specimen, slides were scanned using Vectra 3 (PerkinElmer), with nine representative areas chosen formultispectral

imaging – (i) areas with 50% tumor and 50% stroma, (ii) areas with > 90% tumor, and (iii) one area with > 90% adjacent normal, wher-

ever possible. These images were factored equally for each patient during analysis using InFormTM software (PerkinElmer). Single

stained slides and unstained slides were used for building the spectral library and for unmixing, taking autofluorescence spectrum

of patient tissue into account.
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Image analysis
Using the spectral library, the nine representative regions for each patient were spectrally unmixed before manual tissue segmenta-

tion using inForm software (Version 2.6, PerkinElmer). Tissue segmentation included highlighting examples of CA9+ renal tumor

tissue, classifying the CA9- highly cellular regions as stroma; and the spatially distant CA9- tubular regions as adjacent normal (Fig-

ure S7). This trained the InForm algorithm to characterize each of the three tissue types and segment all the corresponding regions for

each patient sample. Cellular components were then identified for each cell using the DAPI nuclear counter stain to define the

nucleus; and CD3 and C1q stains to detect the associated membrane and cytoplasm, respectively. Using DAPI, we adjusted the nu-

clear splitting intensity to prevent incorrect identification and quantification of cells due to clumping. Individual cells were then phe-

notyped manually on the basis of their staining as Tumor cells (CA9+, yellow), macrophages (CD68+ or CD163+, orange), T cells

(CD3+, white), ApoE+ (aqua), TREM2+ (magenta) and C1q+ (green). A training set was defined for the InForm algorithm of around

30 cells for each phenotype, from which we were able to distinguish between the cell densities across all tissue types within the

nine fields for each patient. The cells were then scored for the staining intensities of each individual marker, including co-expression

across the three tissue types – tumor, stroma and adjacent normal, and threshold fluorescence value of positive staining versus back-

ground was computed for each marker by the InForm software. The data from each field was compiled to summarize the position,

phenotype and density of cells for each patient. Data were further analyzed in R version 3.6.1 using the phenoptr package, such that

all fields for each patient sample were combined into a single data frame with cell-by-cell annotation of classified tissue context

(tumor, tumor stroma, or adjacent normal), and fluorescence intensity of all markers.

Co-staining of C1Q, TREM2, and APOE with known macrophage markers was determined by generating contingency tables of

C1Q, TREM2, or APOE positive cells with CD68/CD163 positive cells, and testing for statistical over-representation of C1Q/

TREM2/APOE on macrophages by Fisher’s Exact Test. Odds ratios of co-staining with CD68/CD163+ versus CD68/CD163- cells

were computed across all 11 patients in the cohort profiled by single-cell RNASeq, shown as a boxplot in Figure 7B. Cell counts

were computed and normalized in the tumor stromal and adjacent normal tissue contexts for each combination of C1Q+/

TREM2+/APOE+Macrophages, defined by positive staining for DAPI and CD68/CD163 and negative staining for CD3 and CA9. Fre-

quencies of each cell population in tumor stroma versus adjacent normal tissue were compared by paired Wilcox test for the 7 pa-

tients in which regions of both tumor stroma and adjacent normal tissue were identified on the same stained tissue slices (Figures 7C

and 7D).

In the separate validation cohort of 8 patients for which 4 experienced early post-surgical recurrence and 4 did not, frequency of

each combination of C1Q+/TREM2+/APOE+Macrophage cells was computed in the sameway as described above, and frequencies

of each population in tumor stroma of recurrent versus non-recurrent patients were compared by unpaired Wilcox test (Figure 7E).

Since C1Q+ cells andC1Q+CD68/CD163+ cells were significantly enriched in tumor stroma of patients with early recurrence, fraction

of cells staining for these markers was tested for association with time-to-recurrence. Threshold for defining high versus low fraction

of cells positive for thesemarkers was determined bymaximization of the log-rank statistic, such that frequency of C1Q+ cells > 0.02

was determined to be high C1Q+ and frequency of C1Q+CD68/CD163+ cells > 0.01 was determined to be high C1Q+CD68/CD163+.

Kaplan-Meier curve was plotted for each population, with statistical significance assessed by log-rank test.

Association of tumor macrophage signature with clinical recurrence
A protein signature for the Tumor-Specific Macrophage cluster was defined based on proteins differentially upregulated in the VIPER

macrophage cluster (see Table S2 for gene and protein marker lists defining each VIPER cluster). In the dataset of FFPE samples

profiled by bulkRNASeq that had been followed for time-to-recurrence after nephrectomy, outlier samples with low total read-counts

were filtered out, and signature of remaining patients with recurrence (time-to-recurrence 8 months, 12 months, 12 months, and

82 months) versus patients without recurrence (observation period 35 months, 86 months, 110 months, and 113 months), was

computed by z-score scaling of log10(TPM) normalized counts. Protein activity was computed from gene signature by VIPER using

the CD45+ ARACNe networks inferred from single-cell data. Enrichment of the Tumor-Specific Macrophage protein marker set in the

VIPER-transformed signature of recurrence versus no recurrence from bulkRNASeq was computed by Gene Set Enrichment Anal-

ysis (GSEA), with normalized enrichment score and p value determined by 1000 random permutations of gene labels. Activity of pro-

teins in the leading edge of the enrichment was plotted sample-by-sample in a gene expression heatmap. Sample-by-Sample

Normalized Enrichment Scores were also computed by ranking proteins in each sample according to decreasing activity. Cox regres-

sion of the raw normalized enrichment scores against time to disease recurrence was performed. Normalized enrichment scores for

each sample were then binarized to less than zero (low) or greater than zero (high), and Kaplan-Meier curve showing association with

time to recurrence was plotted along with the binarized log-rank p value.

Results were further validated by repeating the sample-by-sample gene set enrichment of VIPER macrophage markers in a larger

cohort of 157 patients profiled by bulk-RNASeq, where enrichment of macrophage signature was associated with shorter time to

post-surgical disease recurrence with log-rank p value of 0.0029. This analysis was performed using the ggsurvplot and survminer

packages in R, and is shown in Figure 6. Validation of tumor-specific macrophage association with time-to-recurrence was also per-

formed by immunohistochemical staining of FFPE tissue from the same 8 patients analyzed by RNA sequencing. Immunohistochem-

ical staining and fluorescence thresholding was performed as described above, and proportion of C1Q, TREM2, APOE, and CD68/

CD163 positive cells in the tumor stroma was compared in recurrent versus non-recurrent patient samples, along with the propor-

tions of cell co-staining for every combination of those markers. Significance of the difference in frequency between recurrence and
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non-recurrence samples was assessed by unpaired Wilcox test. Cell populations with significant difference in staining between the

two groups were further assessed by log-rank regression against time-to-recurrence. Frequency threshold for high versus low level

of staining was determined bymaximizing the log-rank statistic, and Kaplan-Meier curve associating IHC staining with time-to-recur-

rence was generated, shown in Figure 7F.

QUANTIFICATION AND STATISTICAL ANALYSIS

All quantitative and statistical analyses were performed using the R computational environment and packages described above. Dif-

ferential gene expression was assessed at the single-cell level by the MAST single-cell statistical framework as implemented in

Seurat v3 (Finak et al., 2015), and differential VIPER activity was assessed by t test, each with Benjamini-Hochberg multiple-testing

correction. Comparisons of cell frequencies were performed by non-parametric Wilcox rank-sum test, and survival analyses were

performed by log-rank test. In all cases, statistical significance was defined as an adjusted p value less than 0.05. Details of all sta-

tistical tests used can be found in the corresponding figure legends.
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Supplemental figures

Figure S1. Gating and quality control, related to STAR Methods

A) Representative Live CD45+/� gating. B) distribution of combined % mitochondrial genes, number of UMIs/cell, and number of genes/cell for CD45+ and

CD45- Tumor and Adjacent Normal samples, following quality-control filtering.
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Figure S2. Consistency of cell-type clustering across patients, related to Figures 1 and 4
UMAP plots of global gene expression clustering and global VIPER clustering for both CD45+ and CD45- cells, split by individual patient identity, such that the

overall cell types identified are consistent across patients, with minimal batch effect.
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Figure S3. Visualization of cell-type labels, related to Figures 1 and 4

A) UMAP plots of global gene expression clustering for both CD45+ and CD45- cells overlaid with cell-by-cell SingleR cell type labels, excluding labels with p >

0.05. B) Gene Expression UMAP plot re-colored by VIPER clusters C) VIPER UMAP plot re-colored by Gene Expression clusters.
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Figure S4. Resolution-optimized Louvain clustering silhouette scores, related to STAR Methods

Mean and Standard Deviation of Silhouette Score by Resolution-Optimized Louvain algorithm for each resolution value ranging along the x axis from 0 to 1.0 at

intervals of 0.01, showing ‘‘best’’ resolution in the top-right as the resolution that maximizes mean silhouette score. Includes CD45+ Gene Expression clustering,

CD45- Gene Expression clustering, CD45+ VIPER clustering, and CD45- VIPER clustering.
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Figure S5. Validation of VIPER inference robustness on paired antibody and scRNA-seq data by CITE-seq, related to Figure 3

A) Additional validation of VIPER inference robustness on public CITE-Seq dataset concurrently profiling antibody staining on small set of proteins and gene

expression in the same single-cells from cord bloodmononuclear cells (CBMC). Analysis performed as in Figure 3, demonstrating recovery of cell types identified

with antibody staining by VIPER despite data dropout by gene expression. B) Coefficient of Variation for each gene by antibody staining, gene expression, and

VIPER, showing dramatic reduction by VIPER relative to gene expression for all markers, improving even on variability of antibody staining. C) pairwise Spearman

correlation of each gene to antibody staining by gene expression or by VIPER, showing stronger correlation by VIPER to antibody staining for all genes. D)

Representative pairwise scatterplot of gene expression and antibody staining intensity in the same cells, showing CD3E gene against CD3 protein stain, with

weak positive Pearson correlation. E) Pairwise scatterplot of the same cells shown in D by VIPER activity versus antibody staining intensity, with significantly

stronger Pearson correlation and visual segregation of distinct cell lineages outlined by red boxes.
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Figure S6. Visualization of C1Q+/TREM2+ cells by immunohistochemistry, related to Figure 7

A) IHC plots showing typical morphology of tumor and adjacent non-tumor tissue B) C1Q/TREM2 co-staining with CD68/CD163 showing higher density in a

representative recurrent patient (left) than a representative non-recurrent patient (right).
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Figure S7. Receptor-ligand interactions are inferred between tumor cells, tumor macrophages, and T cells, related to Figure 5

A) Table of known receptor-ligand interaction pairs for which ligand is significantly upregulated by Gene Expression in one cluster and receptor is significantly

upregulated by VIPER in another. Subset to interactions inferred to occur between Tumor Macrophages and T cells, between Tumor cells and T cells, or between

Tumor Macrophages and Tumor cells. B) Visualization of the receptor-ligand interaction pairs shown in A.

ll
Article


	CELL12018_proof.pdf
	Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages
	Introduction
	Results
	Protein activity analysis of CD45+ TME cells reveals tumor-specific immune subpopulations
	Relative specificity of tumor-infiltrating immune cell populations
	Master regulators of subpopulation transcriptional state
	VIPER-inferred protein activity recapitulates flow cytometry, overcoming scRNA-seq-related gene dropout
	Protein activity in CD45– cells distinguishes tumor cells from adjacent normal epithelium
	Inferred tumor-cell copy-number alterations are characteristic of ccRCC
	Dissecting receptor-ligand interactions in ccRCC
	A tumor-specific macrophage signature is associated with disease recurrence
	C1Q/TREM2-expressing macrophages are tumor restricted and associated with post-surgical recurrence

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key Resources Table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Tissue dissociation
	Single-cell RNA sequencing
	Single-cell RNA-seq gene expression processing
	Resolution-optimized Louvain clustering algorithm
	Semi-supervised cell type calling
	Regulatory network inference
	Protein activity inference
	Copy number inference
	Flow cytometry data acquisition
	Multi-dimensional analysis of flow cytometry data
	Receptor-ligand interaction inference
	Staining for multiplex immunohistochemistry
	Multispectral imaging
	Image analysis
	Association of tumor macrophage signature with clinical recurrence

	Quantification and statistical analysis




