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SUMMARY
Genetic studies have revealed many variant loci that are associated with immune-mediated diseases. To
elucidate the disease pathogenesis, it is essential to understand the function of these variants, especially un-
der disease-associated conditions. Here, we performed a large-scale immune cell gene-expression analysis,
together with whole-genome sequence analysis. Our dataset consists of 28 distinct immune cell subsets
from 337 patients diagnosed with 10 categories of immune-mediated diseases and 79 healthy volunteers.
Our dataset captured distinctive gene-expression profiles across immune cell types and diseases. Expres-
sion quantitative trait loci (eQTL) analysis revealed dynamic variations of eQTL effects in the context of immu-
nological conditions, as well as cell types. These cell-type-specific and context-dependent eQTLs showed
significant enrichment in immune disease-associated genetic variants, and they implicated the disease-
relevant cell types, genes, and environment. This atlas deepens our understanding of the immunogenetic
functions of disease-associated variants under in vivo disease conditions.
INTRODUCTION

Immune-mediated diseases (IMDs) consist of a wide range

of pathologies from autoimmunity to autoinflammation (van

Kempen et al., 2015), and they affect a large number of people

around the world. Although aberrant inflammatory cytokine ac-

tivity in IMDs indicates the altered functions of immune cells

(Wahren-Herlenius and Dörner, 2013), little is known about the

responsible genes or even relevant cell types underlying IMDs.
Genome-wide association studies (GWAS) have revealed a

number of genomic loci that are associated with complex traits

and diseases, including IMDs (Liu et al., 2015; Okada et al.,

2014). The majority of these variants lie in non-coding genomic

regions (Farh et al., 2015), especially regulatory elements such

as enhancers and promoters (Maurano et al., 2012). To decipher

the function of these regulatory variants, we sought to examine

their effects on gene regulation by analysis of expression quan-

titative trait loci (eQTL).
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Figure 1. Diversity in gene expression among immune cells and immune-mediated diseases

(A) Summary of the samples collected in this study. Sample numbers after quality control are presented in parentheses. Color coding of each cell type in

this article is illustrated, and the rectangles indicate the lineages to which they belong. When both the parent population and its subsets were analyzed,

their relationship is indicated beneath with thin lines. A full description of subset names is in Table S8. See also Figure S1 for sorting strategy of immune cell

subsets.

(B) Proportion of gene-expression variance explained by cell types, differences among individuals and differences among clinical diagnoses. Gray shading

indicates ±1.96 SD.

(C) Hierarchical clustering of RNA-seq samples based on the 5,000 most variable genes. The top labels are colored by each cell type, and the bottom labels are

colored by their lineages. The color code is indicated in (A).

(D) Cell-type-specific expressed genes. Column-wise Z scores of normalized counts are plotted. Representative genes are annotated on the top. Full lists of cell-

type-specific genes are in Table S2.

(E) Comparison of gene-module expression among IMDs. The associations of gene-module eigenvectors and clinical diagnoses were assessed with a linear

regression model. b coefficients comparing the patients and healthy volunteers are plotted when the differences are significant (FDR <0.01). Disease names are

hierarchically clustered based on the correlation distance of b coefficients. The associations of module eigenvectors and covariates included in the analysis are

(legend continued on next page)
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Many eQTL studies in various tissues and cell types have

been performed (Chen et al., 2016; GTEx Consortium, 2020;

Lappalainen et al., 2013; Schmiedel et al., 2018). The Geno-

type-Tissue Expression (GTEx) consortium has conducted

large-scale tissue eQTL analyses and greatly advanced this field.

They have unraveled the tissue or cell-type specificity of eQTLs

(Kim-Hellmuth et al., 2020), the impact of sample size on eQTL

discovery (GTEx Consortium, 2020), and the importance of

analyzing relevant tissue eQTLs for interpretation of GWAS sig-

nals (Gamazon et al., 2018). Nonetheless, it is important to

note that GTEx has not focused on immune cells, which have

been generally included as whole-blood or EBV-transformed

lymphocytes. As for immune cell eQTLs, some datasets

including BLUEPRINT (Chen et al., 2016) and DICE (Schmiedel

et al., 2018) have clarified the genetic functions in immune cells

and their cell-type-specific features. However, they were limited

in the number of cases (~197 and 91 samples per cell type,

respectively) and the comprehensiveness of cell types (3 and

13 cell types, respectively). For example, plasmablasts or den-

dritic cells, both of which are important for autoimmunity

(Ganguly et al., 2013; Martin and Chan, 2004), were not collected

in these studies.

An important feature of eQTL analyses in immune cells is that

there are dynamic variations in response to external stimuli

(Alasoo et al., 2018; Fairfax et al., 2014; Simeonov et al., 2017).

For that reason, studies of immune cells from healthy donors

might not capture the range of eQTL effects found in disease

states. Also, while experimental stimulation of immune cells

can mimic disease status to some extent, it does not always

reflect the in vivo physiologic environment (Tawfik et al., 2020).

We describe here our construction of a database of gene

expression as well as genome sequencing data from a large va-

riety of immune cells from IMD patients. Collectively, those data

are termed the ‘‘Immune Cell Gene Expression Atlas from the

University of Tokyo (ImmuNexUT).’’ We identified immune cell-

type-specific eQTL effects, including previously unreported

rare cell types, their diversity under physiological inflammatory

conditions, and significant association of these eQTLs with

IMD genetics. Our non-European, comprehensive, diversified

atlas of immune cells will allow researchers to better understand

immunogenetic functions in vivo.

RESULTS

Diversity in gene expression among immune cells and
immune-mediated diseases
After quality control, we examined gene-expression patterns

across 9,852 samples from 416 donors. The samples were pro-

vided by 79 healthy volunteers and 337 patients who were diag-

nosed with systemic lupus erythematosus (SLE), idiopathic

inflammatory myopathy (IIM), systemic sclerosis (SSc), mixed

connective tissue disease (MCTD), Sjögren’s syndrome (SjS),
plotted on the right. Representative results of cytokine pathway enrichment an

Figure S2A.

(F) Genes dysregulated in specific diseases. Effect estimates compared to health

cell types and the effect estimates. Representative upregulated genes are show

See also Figures S1 and S2.
rheumatoid arthritis (RA), Behçet’s disease (BD), adult-onset

Still’s disease (AOSD), ANCA-associated vasculitis (AAV), or Ta-

kayasu arteritis (TAK) (Figure 1A; Table S1). We purified 28

distinct immune cell types that included almost every type of pe-

ripheral immune cells (Figure S1).

With a random-effects model, the largest proportion of gene-

expression variance was explained by cell-type differences

(Figure 1B). Individual differences also explained non-zero vari-

ance of expression for most of the genes, and clinical diagnoses

explained variance for some genes to a lesser extent (Figure 1B).

Hierarchical clustering demonstrated that gene-expression pat-

terns accurately recapitulated fractionated immune cell sub-

types (Figure 1C). Each subset harbored specifically expressed

genes, including those for cytokine receptors or pattern recogni-

tion receptors, suggesting their distinct responses to environ-

mental signals (Figure 1D; Table S2). Specifically expressed

genes includedwell-known lineage-specific transcription factors

(Oestreich and Weinmann, 2012) (e.g., FOXP3 in regulatory

T cells and RORC in Th17 cells) as well as previously unregarded

ones (e.g., FOXP4 in double-negative [DN] B cells), indicating

that our comprehensive dataset serves as a useful atlas for the

study of immune cells.

We constructed data-driven gene modules and compared

their expression levels between IMDs and healthy volunteers

(STAR Methods). When we compared the patterns of dysregu-

lated gene modules, IMDs were divided into 2 groups, largely

corresponding to clinically distinct autoimmune diseases (SLE,

MCTD, SSc, SjS, IIM, and RA) and autoinflammatory diseases

(BD and AOSD) (Figure 1E). For the annotation of gene modules

to biological pathways, we separately constructed gene mod-

ules with single-cytokine stimulated synovial fibroblast RNA

sequencing (RNA-seq) data (Tsuchiya et al., 2020) and assessed

their overlaps (STARMethods; Figure S2A). Genemodules upre-

gulated in autoimmune diseases (cluster 1 in Figure 1E) showed

significant overlap with interferon (IFN)-induced gene sets,

whereas gene modules upregulated in autoinflammatory dis-

eases (cluster 3) showed significant overlap with interleukin

(IL)-18- or IL-1b-induced gene sets (Figure S2A), consistent

with previous disease-by-disease studies (van Kempen et al.,

2015). When we compared the expression of these modules

between individual donors, autoimmune disease patients, espe-

cially those with SSc, IIM, and RA, showed heterogeneous distri-

butions (Figure S2B), consistent with heterogeneity both within

and between autoimmune diseases (Cho and Feldman, 2015).

When we compared patients with autoantibodies, a significant

proportion of IIM patients with antibodies against the melanoma

differentiation associated protein 5 (anti-MDA5), known to be

associated with severe clinical symptoms (Sontheimer, 2017),

belonged to the high interferon signature group (two-sided

Fisher’s exact test, p = 0.0048, Figure S2C). The patient hetero-

geneity among diseases underpins the usefulness of cross-dis-

ease datasets for improved understanding of IMD patients.
alysis of gene modules are shown. Full results of enrichment analysis are in

y volunteers are plotted (STAR Methods). Genes are arranged according to the

n on the right. A full list of the genes is in Table S3.
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Figure 2. Expression QTLs show immune cell-type specificity and the influence of in vivo stimulation

(A) The number of significant eGenes in each cell subset (top) and the number of samples used for eQTL analysis (bottom). Top bars are colored by the number of

conditionally independent eQTLs for each gene.

(B) Enrichment of conditionally independent eQTLs in promoters or enhancers of the corresponding cell types from Roadmap data (STAR Methods) stratified

by rank.

(C) Pairwise sharing by magnitude of eQTLs among immune cell subsets. For each pair of immune cells, the proportion of eQTLs that have the same sign

and the effect size within a factor of 2 of one another is plotted. Cell types are arranged by hierarchical clustering. The colored bars (left) indicate the cell-type

lineages.

(D) Overlap of top eVariants (x axis) with differentially accessible regions from independent ATAC-seq study (y axis). Subset names of ATAC-seq data are from the

original article (Calderon et al., 2019). The color bars indicate the cell-type lineages.

(E) Distribution of the number of cell types in which eQTLs were shared by significance (left) or magnitude (right). QTL magnitude was defined to be shared when

the effect estimate outputted bymashwaswithin a factor of 2. QTLwas defined to be significant if it had amash local false sign rate (LFSR) of <5%. Here, each cell

type is classified into 1 of 3 lineages: T/NK cells, B cells, and myeloid cells. The bar chart is colored according to their sharing by the 3 lineages.

(legend continued on next page)
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Along with the pathways commonly dysregulated in IMDs,

some genes were especially dysregulated in specific diseases

(Figures 1F and S2D; Table S3). These included previously indi-

cated genes (e.g., MZB1 and ATF4, possibly associated with

excessive endoplasmic reticulum stress, upregulated in SLE

B cells [Miyagawa-Hayashino et al., 2018; Zhang et al., 2015]).

However, the majority of the genes were previously unreported

(e.g., ZC3H12A and TNIP1, associated with the modulation of

the nuclear factor kB (NF-kB) pathway [G’Sell et al., 2015;

Matsushita et al., 2009], upregulated in AOSD natural killer

[NK] cells). Thus, our resource is consistent with well-character-

ized features of IMDs and might be useful in investigating previ-

ously unrecognized pathogenesis of IMDs in the future.

Expression QTLs show immune cell-type specificity
To characterize the regulation of gene expression in immune

cells, we performed eQTL analysis with deep whole-genome

sequence (WGS) data with a mean coverage of 413. Our

genome data showed good concordance of allele frequency

with East Asian samples from the 1000 Genomes Project (Auton

et al., 2015) and the Japanese WGS reference panel (Tadaka

et al., 2018) (Figures S3A–S3C). In each cell type, we performed

a forward-backward stepwise linear regression (Battle et al.,

2017) between autosomal expressed genes (eGenes) and ge-

netic variants (eVariants) located within 1 Mb of the transcription

start site. Covariates included clinical diagnoses and latent

factors. We empirically adjusted for the number of latent factors

according to sample sizes following previous reports (GTEx

Consortium, 2020) (Figures S3D and S3E; STARMethods). Here-

after, we denote independent eVariants with the highest associ-

ation with eGene in each regression trial as the ‘‘top eVariants.’’

Our analysis identified eQTLs for 13,395 protein coding genes

and 3,839 long non-coding RNAs at a 5% false discovery rate

(FDR). A median of 7,092 genes were identified as eGenes in

each cell type (Figure 2A), which is 2.2-fold more than that iden-

tified in the DICE database (Schmiedel et al., 2018). Conse-

quently, the majority of eGenes was shared among cell types

(Figure S3F), which is not concordant with the information that

DICE reported. This discrepancy was not solely due to small

subdivision of immune cells in our dataset because eGenes

were shared between lineages even when we categorized im-

mune cells into 3 large lineage groups (T/NK cells, B cells, and

myeloid cells; Figure S3F). Expression QTL effect sizes were

significantly higher in eGenes that were detected in both of the

datasets than eGenes that were detected only in ImmuNexUT

(p < 2.23 10�16, Mann-Whitney U test). Taken together, we sur-

mise that, while DICE identified cell types in which eQTLs had

relatively large effect sizes, the other cell types also harbored

eQTLs for the same genes but with smaller effect sizes, effects

that were detected in ImmuNexUT.

We identified 2 or more conditionally independent eVariants

(i.e., variants independently associated with gene expression in
(F) Comparison of effect estimates of top eVariants between healthy volunteers a

(G) The number of IMD-specific eQTLs in each cell subset.

(H) Enrichment of IMD-specific eQTLs and eQTLs significant in both healthy volun

95% CI.

See also Figure S3.
conditional analysis) in 25% (median) of eGenes (Figure 2A).

Compared to the primary eVariants, these independent second

or later eVariants showed greater enrichment in enhancers of

matching Roadmap cell types as previously reported (Kundaje

et al., 2015; Battle et al., 2017; Ishigaki et al., 2017) (Figure 2B).

When eQTLswere stratified by effect sizes, low effect size eQTLs

overlapped with enhancers as well as high effect size eQTLs, on

the contrary to the predominant overlap of promoters with high

effect size eQTLs (Figure S3G). As cell-type-specific gene

expression is largely regulated by enhancers (Heinz et al.,

2015), those results indicate the importance of large sample

size in identifying cell-type-specific eQTLs, which frequently

have low effect sizes. The following observations from our data-

set confirmed the cell-type specificity of eQTL effects. First, by

comparing the sharing of eQTL effect sizes among cell types

with the multivariate adaptive shrinkage (mash) method (Urbut

et al., 2019), we observed an obvious pattern of similarity among

biologically related cell subsets (Figure 2C). Second, when we

compared our top eVariants with open chromatin regions using

data from assay for transposase-accessible chromatin

sequencing (ATAC-seq) (Calderon et al., 2019), eVariants

showed high overlap with differentially accessible regions of

the respective cell type (Figure 2D). Also, our top eVariants

were enriched in enhancer and promoter elements of Roadmap

immune cells (Kundaje et al., 2015), with higher cell-type speci-

ficity for enhancers of relevant cells (Figures S3H–S3J). Those

data suggested that immune cell eQTLs are in part driven by

cell-type-specific elements. When we compared local false dis-

covery rate (LFSR) outputted by mash (Urbut et al., 2019; STAR

Methods), which is a metrics for eQTL significance, more than

half of eQTLs had detectable effects in majority of immune cell

types (>25 out of 28, Figure 2E, left panel). On the contrary,

when focusing on the effect estimates outputted by mash,

many eQTLs had variable effect sizes across cell types, as well

as lineages (Figure 2E, right panel). These observations are in

accordance with a previous report from a tissue eQTL study

(Urbut et al., 2019).

Immune-mediated disease-specific eQTLs demonstrate
the influence of in vivo stimulation
To assess the impact of including patient-derived samples for

eQTL identification, we next separately performed eQTL analysis

in each cell subset only with healthy volunteer samples or only

with IMD patient samples. For a fair comparison, here we limited

the analyses to variants with minor allele frequency >0.1 in both

groups and genes expressed in both. We combined the eQTL ef-

fects of top eVariants with mash. As expected, majority of eQTLs

were shared (94% of eQTLs attained LFSR <0.05 in both)

although the absolute values of the effect estimates were signif-

icantly higher in IMD patients on average (p < 2.23 10�16, Mann-

Whitney U test). Some eQTLs were significant only in IMD

patients (Figure 2F). The number of IMD-specific eQTLs varied
nd IMD patients. Results of 20 cell types are plotted together (STAR Methods).

teers and IMD patients to functional annotations (STARMethods). Bars indicate
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Figure 3. ImmuNexUT exhibits good concordance with previous eQTL studies and provides complementary information

(A) Comparison of b coefficients between ImmuNexUT eQTLs and previously reported bulk immune cell eQTLs (Ishigaki et al., 2017). Ratio of eQTLs in a

consistent direction and the number of eQTLs significant in both studies are annotated at top left and right bottom of each plot, while highlighted in red for pairs of

corresponding cell types.

(B–F) Comparisons with large-scaled whole-blood eQTL study (Võsa et al., 2018) (eQTLGen, below).

(B) Replication frequency (p1 statistics) of significant cis-eQTLs discovered in eQTLGen. Significant eQTLs (FDR <0.05) in eQTLGen are further divided into each

bin according to percentiles of absolute values of Z scores, and their replication frequency in ImmuNexUT are evaluated in each cell type. The color of each dot

indicates cell type as illustrated in Figure 1A.

(C) Proportions of top eQTLs from eQTLGen that were significant (FDR <0.05) in each cell-type analysis of ImmuNexUT. Cells were divided into 3 lineages: T/NK

cells, B cells, and myeloid cells. We compared the lineage sharing (pie chart) and the number of significant cell types in each category (outer ring).

(legend continued on next page)
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among cell types, with a tendency for larger number in myeloid

cells (Figure 2G). Compared to eQTLs significant in both healthy

volunteers and IMD patients, IMD-specific eQTLs were signifi-

cantly more enriched in enhancers and in immune cell ATAC-

seq peaks that were induced after stimulation (Calderon et al.,

2019) (Figure 2H). When assessing the overlap with disease-

associated variants, IMD-specific eQTLs, as well as eQTLs

shared with healthy volunteers, showed significant enrichment

in IMD-associated GWAS variants (Figure S3K). These observa-

tions suggested that using patient-derived samples for eQTL

identification helps to identify stimulation-dependent eQTLs un-

der physiologic conditions, which are relevant to disease biology

and difficult to detect with only healthy volunteer samples.
ImmuNexUT exhibits good concordance with previous
eQTL studies and provides complementary information
To evaluate the validity of our eQTLs, we compared our results

with 2 external datasets. First, we compared our data with our

previously reported bulk immune cell eQTL study of 105 healthy

Japanese volunteers with no sample overlap (Ishigaki et al.,

2017). There was good concordance in eQTL effects (Figure 3A,

binomial p < 2.2 3 10�16 for each pair of corresponding cell

types), supporting the reproducibility of our data.

Next, we compared our data with the largest current whole-

blood cis-eQTL dataset based on the analysis of >30,000 Euro-

peans (Võsa et al., 2018) (eQTLGen). For the significant eQTLs

from eQTLGen (FDR <0.05), a median of 40% was replicated in

each immune cell, and this proportion became much higher

with the more stringent eQTL significance thresholds in

eQTLGen (Figure 3B). Of the best eVariants per eGene in

eQTLGen that were polymorphic in Japanese donors, 64%

were also significant in at least 1 immune cell type (Figure 3C).

By comparison, 20%–25% of top eVariants in our dataset that

were polymorphic in Europeans were not significant in eQTLGen

(Figure 3D). Although this ratio was largely proportional to the

number of eGenes, it was disproportionally high in plasmablasts

and plasmacytoid dendritic cells (pDCs) (Figure 3D). This

outcome might be due to the scarcity and relatively distinct

eQTL features of thesecell types (Figures 2CandS1). Also, Immu-

NexUT top eVariants that were not significant in eQTLGen were

biased to lower allele frequencies in Europeans and second or

later conditionally independent eQTLs (Figures 3E and 3F), which

might be difficult to detect in even large-scale whole-blood data.
Combining eQTL datasets from different populations
improves accuracy for fine mapping
In order to evaluate the utility of our Japanese eQTL data for fine

mapping of causal eQTL variants, we jointly fine-mapped our

data with European whole-blood data from GTEx v8 (GTEx

Consortium, 2020), in which WGS analysis was also performed.
(D) The ratio of ImmuNexUT significant eQTLs that were also polymorphic in Eur

plotted against the number of eGenes in ImmuNexUT. The color of each dot ind

(E) Distribution of minor allele frequencies of eVariants in Europeans and Japanese

for eQTLs significant in both datasets.

(F) Distribution of ranks of conditionally independent eQTLs significant only in Imm

frequency >0.1 in Europeans were utilized for comparison.
We conducted this analysis with classic monocyte and neutrophil

data that have relatively large overlaps of eQTLswithwhole blood.

Compared to the independent analysis, the joint analyses signifi-

cantly reduced the number of candidate causal variants (95%

credible set: the variant set that was assumed to include all the

causal variants with 95% confidence) while maintaining a strong

enrichment in experimentally validated functional variants by re-

porter assay (van Arensbergen et al., 2019) (Figure 4A). As ex-

pected, differences in linkagedisequilibrium (LD) likely contributed

tonarrowingdowncausal variants insome loci. For example, in the

MFN2 locus (Figure4B), the eQTLvariantwas inhighLDwithmany

proxy variants in Europeans and it was difficult to fine-map causal

eQTL variant with European data. The different LD structure in

Japanese subjects aided fine mapping and narrowed down to 5

variants in the 95% credible set with joint analysis, and the top

prioritized variant, rs873458, had functional activity in a previously

published reporter assay (van Arensbergen et al., 2019). In the

CEP19 locus (Figure 4C), we could narrow down to 3 variants in

the 95%credible set with joint analysis, and top prioritized variant,

rs71323742, had functional activity in a reporter assay (van

Arensbergen et al., 2019). These results suggested the utility of

combining datasets from different populations for fine mapping.
Identification of biological pathways that diversify eQTL
effects in vivo

Based on previous reports regarding the heterogeneous effects of

eQTLs either in vitro (Fairfax et al., 2014) or in vivo (Davenport et al.,

2018; van der Wijst et al., 2018; Zhernakova et al., 2017), we

analyzed the interaction of eQTL effect size and genome-wide

geneexpression that aredependenton intrinsic or extrinsic factors

(context-dependent eQTL) (Figure S4A) (Zhernakova et al., 2017).

Here, genome-wide gene expression was treated as the proxy of

various environmental contexts, and we call them ‘‘proxy genes’’

(pGenes) as previously proposed (Zhernakova et al., 2017).

We analyzed the top eVariants in each cell type, adjusted p

values by permutations of pGene labels, and identified 37,875 sig-

nificant pGene-eQTL interactions for 5.6%of eGenes (FDR<0.05,

Table S4). The pGenes with significant positive interactions with

eQTLs formed distinct clusters based on their interactions

(Figure 5A), indicating functionally relevant gene sets associated

with similar gene regulatory machinery. As expected, genes that

significantly overlapped with curated IFN signature gene set

(one-sided Fisher’s exact test, p = 9.2 3 10�111) (Liberzon et al.,

2015), which can be considered as proxies of IFN activity, made

a cluster (P1 in Figure 5A). Gene transcription downstream of IFN

isknown tobemediatedbycomplexes thatconsist of transcription

factors STAT1, STAT2, and IRF9 (Michalska et al., 2018). Consis-

tently, STAT1, STAT2, and IRF9 belonged to cluster P1, and

eQTL variants interacting with P1 genes (cluster E1) were signifi-

cantly enriched in STAT1- or STAT2-binding motif breaking sites
opeans (minor allele frequency >0.1) but not significant in eQTLGen. Data are

icates cell type as illustrated in Figure 1A.

. Left panel shows for eQTLs significant only in ImmuNexUT. Right panel shows

uNexUT (left) and significant in both datasets (right). Variants with minor allele
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Figure 4. Combining eQTL datasets from

different populations improves accuracy

for fine mapping

(A) The number of variants in fine-mapped 95%

credible sets (left) and the enrichment of fine-

mapped variants in experimentally validated

functional variants (right). GTEx whole-blood and

ImmuNexUT classic monocytes or neutrophils are

analyzed independently and jointly. **Two-sided

Wilcoxon signed-rank tests, p < 2.23 10�16. In the

right panel, variants in 95% credible sets were

further divided into each bin according to percen-

tiles of posterior probabilities of being causal, and

their enrichment to experimentally validated func-

tional variants (van Arensbergen et al., 2019) are

plotted. Bars indicate 95% CI.

(B and C) Fine mapping ofMFN2 eQTL variants (B)

and CEP19 eQTL variants (C). In the left panel,

variants in 95% credible sets in independent and

joint analysis are highlighted with red. Variants with

functional activity in a reporter assay (van

Arensbergen et al., 2019) are highlighted at the

bottom. In the right panel, r2 measures of linkage

disequilibrium between analyzed variants are

plotted in European and Japanese population.
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(p = 5.93 10�9), supporting the validity of these interactions. Clus-

terP3showedsignificantoverlapwithcell-cycle-associatedgenes

(p = 9.6 3 10�37), which might be proxies of cell proliferation

(Whitfield et al., 2006). Cluster P8 showed significant association

with eQTLs in DNB cells (cluster E7) and showed significant over-

lap with upregulated genes in DN2 B cells (Jenks et al., 2018) (p =
8 Cell 184, 1–16, May 27, 2021
1.6 3 10�19). Thus, this cluster might be a

proxy of the DN2 B cell population. High

IFN activity in autoimmune patients (repre-

sentedbySTAT1 [Figure5B]), expansionof

DN2Bcells inSLEpatients (representedby

FCRL3 [Figure 5C]), which is consistent

with the previous report (Jenks et al.,

2018), and various cell-proliferation pat-

terns among IMD patients (represented

by CDCA7 [Figure 5D]) were associated

with variations of these events. Addition-

ally, cluster P4 contained genes that were

significantly downregulated with aging

(p = 5.3 3 10�14; STAR Methods). As P4

contained SATB1 (Figure 5E), whose

downregulation is associated with cellular

senescence (Satohetal., 2013), this cluster

might be a proxy of cellular aging and/or

senescence.

Overall, the pGenes, especially those

with many interactions with eQTL ef-

fects, showed larger variation among

IMDs compared with the rest of the

genes (Figure 5F). The pGenes were en-

riched in differentially expressed genes

(DEGs) of IMDs (Figure S4B). Also, the

number of context-dependent eQTLs
significantly decreased when disease variance was regressed

from genome-wide gene-expression data (Figure S4C). These

results indicated that including patient-derived samples

improved power for the detection of context-dependent eQTLs

by increasing variance in expression of the pGenes. Context-

dependent eGenes showed significant overlap with genes



Figure 5. Identification of biological path-

ways that diversify eQTL effects in vivo

(A) Context-dependent eQTLs and their associ-

ated events. For proxy genes (pGenes; right part),

representative gene names are depicted with

black characters, and genes corresponding to

described gene sets are labeled with color in inner

rings. For eQTLs (left part), variants with STAT1 or

STAT2 binding motif breaking effects and those

illustrated in (B)–(E) are marked. Red characters

indicate eGenes whose eVariants are in strong LD

with IMD GWAS top variants. To facilitate inter-

pretation, eQTLs and pGenes were filtered

according to the strength and the number of in-

teractions, and positive and strong pGene-eQTL

interactions are linked (STAR Methods). ISG,

interferon signature gene. DN2, double-negative 2

B cell.

(B–D) Representative interaction plots of pGene

(x axis) and eGene (y axis) expression. P values

were calculated by the interaction analyses of

pGene expression and eQTL effect sizes (STAR

Methods). Top violin plots compare the expression

of pGenes among clinical diagnoses. Two-sided

Welch’s t test. **p < 0.01; ***p < 0.001; ****p <

0.0001 compared to healthy controls (HCs).

(E) Interaction plot of SATB1 expression and

CCNG2 eQTL effects. In the top plot, biological

age was log-normalized and compared with

SATB1 expression.

(F) Proportion of gene-expression variance ex-

plained by diagnoses (10 IMDs or healthy state),

while genes are stratified by the number of

genome-wide significant interactions with eQTL

effects. The numbers in parentheses indicate the

number of genes in each group.

(G) Interaction of NXF1 (rs11304762) eQTL effect

and pGenes in classic monocytes and differential

expression of pGenes in classic monocytes. All

pGenes with FDR <0.05 are shown, and differential

expression Z scores are plotted when the differ-

ences are significant (FDR < 0.05).

See also Figure S4.
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induced after vaccination (p = 2.4 3 10�17), viral infection (p =

9.83 10�8), or LPS stimulation (p = 3.63 10�7). When we strat-

ified context-dependent eGenes by their association with

disease variance, these enrichments were higher in disease

variance-associated eGenes than others (Figure S4D; STAR

Methods). Thus, context-dependent eQTLs of immune cells,

especially those associated with disease conditions, may play

a role in individual differences in inflammatory response or im-

mune response. For instance,NXF1, a regulator of TLR7-driven

IRF5 transcriptional activity (Fu et al., 2017), receives context-

dependent eQTL effect in classic monocytes (Figure 5G). The

pGenes included MAP2K6 and RASA2, members of mitogen-

activated protein kinase (MAPK) and RAS activator, that were

differentially expressed in IMDs in direction concordant with

the eQTL interaction. Thus, this eVariant may diversify individ-

uals’ response under MAPK signaling, which is activated in

IMD patients, via modifying the expression of NXF1.
ImmuNexUT links IMD genetics to cell types, genes, and
environment
We then utilized our eQTL dataset for interpretation of IMD-asso-

ciatedGWAS signals.We assessed the association of our eQTLs

with GWAS results using stratified LD score regression

(Finucane et al., 2015) (STAR Methods). As expected, most of

the eQTL annotations were significantly associated with the her-

itability of a variety of complex traits and diseases, possibly re-

flecting eQTL elements shared by broad range of cell types

and tissues (Hormozdiari et al., 2018) (Figure S4E). When we

conditioned the shared elements by jointly regressing the

meta-analyzed eQTL annotation (STAR Methods), most of the

associations of non-immune traits diminished, although specific

associations of immune diseases and immune cell eQTLs re-

mained (Figure 6A). These results support the cell-type speci-

ficity of heritability enrichment. Our eQTL annotations have

variant-level cell-type-specific functional information that is
Cell 184, 1–16, May 27, 2021 9



Figure 6. ImmuNexUT links IMD genetics to cell types, genes, and environment

(A) Association significance of each cell-type-specific eQTL annotation and polygenic GWAS signals in stratified LD score regression analysis, after multiple

regression with meta-analysis annotation (STAR Methods). *FDR <0.05.

(B) Fold enrichment of ImmuNexUT or GTEx eQTL variants in GWAS top variants. Traits with at least 30 genome-wide significant loci were analyzed. Red circles

indicate tissue-trait pairs that passed Bonferroni significance threshold. Purple bars and dashed lines indicate the median values of the fold enrichment in each

trait and all traits in the category.

(C) Enrichment of context-dependent eQTLs in GWAS top signals compared with all immune cell eQTLs. Red dotted line is the cutoff for Bonferroni significance.

(D) Context-dependent eQTLs that are in tight LD with inflammatory bowel disease GWAS top variant rs35177510 (r2R 0.8 in EUR and EAS) and their association

with pGenes. The pGenes and eQTLs are filtered and arranged in the same order as Figure 5A. Interactions with adjusted Z score >2.5 are linked with red lines.

(E) Comparison of eQTL effect estimates of rs9405202, which is in perfect LD with Crohn disease GWAS top variant rs17309827 (r2 = 1 in EUR and EAS), to

SLC22A23 outputted by mash. The gray bar indicates ±1.96 SD.

(F) Context-dependent eQTL which is in perfect LD with Crohn disease GWAS top variant rs17309827 and its association with pGenes. The pGenes and eQTLs

are filtered and arranged in the same order as Figure 5A. Interactions with adjusted Z score >2.5 are linked with red lines. The interaction with TGFBR2 attained

genome-wide significance (p = 3.3 3 10�10).

See also Figure S4.
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Figure 7. SLE risk genes prioritized by co-

localization analysis

(A) Colocalization of Japanese SLE GWAS variants

and eQTLs. Posterior probabilities of colocaliza-

tion are signed with the directional effect of risk

variants. As metrics for colocalization probability,

CLPP from eCAVIAR is plotted for 2 genes (CDH1

and GPX3) while PP.H4 from coloc is plotted for

the other genes (STAR Methods).

(B) Regional association plots of SLE GWAS and

immune cell eQTLs for ARHGAP31 (left), LBH

(middle), and PTPRC (right) loci.

(C) Comparison of eQTL effect estimates of the

top eQTL variants which are in LD with GWAS

top variants in Japanese in ARHGAP31 (left,

rs62266700), LBH (middle, rs12714303), and

PTPRC (right, rs10919581) loci outputted bymash.

Gray bars indicate ±1.96 SD.

See also Figure S4.
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qualitatively different from region-level epigenome annotation.

We reconfirmed previous findings with epigenome annotation

including the association of regulatory T cells (Fr. II eTreg) with

RA (Kundaje et al., 2015; Trynka et al., 2013) and type 1 diabetes

(Kundaje et al., 2015) and the association of B cells with SLE

(Kundaje et al., 2015). In addition, we identified the associations

of DN B cells with multiple sclerosis and type 1 diabetes, CD8+

T cells with celiac disease, and NK cells with biliary cirrhosis

(Figure 6A).

In some cases, the eQTL effects of GWAS top signals point to

disease susceptibility genes (Gamazon et al., 2018). Therefore,

we assessed the enrichment of top variants from the NHGRI-

EBI GWAS catalog (Buniello et al., 2019) in our top eVariants

by proximity (Figure 6B). All of the eVariants in LD with IMD

GWAS top variants, corresponding eGenes and cell types, are

listed in Table S5. Compared with GTEx v8 data (GTEx

Consortium, 2020), there was increased enrichment of immune

trait GWAS signals in our immune cell eQTLs (e.g., SLE GWAS

top variant enrichment to B cells eQTL; Figure 6B; Table S6).

Those results contrasted with the non-immune trait GWAS
enrichment in GTEx eQTLs (e.g., coronary

artery disease GWAS enrichment to coro-

nary artery eQTL; Figure 6B; Table S6).

It was notable that IMD GWAS signals

showed further enrichment in context-

dependent eQTLs compared to all immune

cell eQTLs (p = 2.3 3 10�8; odds ratio =

10.8, Figure 6C). For example, an IBD-

associated variant showed an IFN-depen-

dent eQTL effect for ADCY3 in monocytes

(Figure 6D). Moreover, a Crohn-disease-

associated variant had an eQTL effect for

SLC22A23 that was specific in pDCs

(Figure 6E) and this eQTL effect interacted

with some genes including TGFBR2

(Figure 6F) that codes for a component of

the transforming growth factor (TGF)-b re-

ceptor. Dendritic cell-specific knockout of
TGFBR2 in mice results in autoimmune phenotypes including co-

litis (Ramalingam et al., 2012), supporting the cell-type-specific

disease relevance of this pathway. Considering IFNs and TGF-b

play key roles in IBD pathogenesis (Friedrich et al., 2019), these in-

teractions illustrate modulation of GWAS variant functions by dis-

ease-associated environmental factors.

Next, based on the significant overlap of immune cell eQTLs

with SLE GWAS top signals (Figure 6B), we prioritized SLE risk

genes by assessing colocalization of GWAS signals and eQTL

signals. Of the 32 suggested associated loci outside the HLA re-

gion in recently reported Japanese SLE GWAS (Akizuki et al.,

2019), 3 were in strong LD with missense variants (STAR

Methods; Table S7). Among the remaining 29 loci, 20 showed

colocalization with at least one immune cell eQTL with stringent

criteria (STAR Methods; Figure 7A; Table S7). Of those, some

showed subset-specific or directionally opposite eQTL effects

among immune cells. The ARHGAP31 eQTL effect was

observed only in plasmablasts and showed strong colocalization

with a GWAS signal (Figures 7B and 7C). Subset specificity was

further supported by data that showed that the open chromatin
Cell 184, 1–16, May 27, 2021 11
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status of this locus occurred only in plasmablasts among various

immune cell types (Figure S4F). Intersecting variants that were in

LD with the top eVariant and the GWAS top variant, and that

overlapped with open chromatin regions enabled us to narrow

down putative causal variants, reinforcing the utility of combining

multi-omics datasets (Figure S4F). LBH showed not only

downregulation in myeloid cells but also upregulation in

plasmablasts by the risk allele, and both effects showed nearly

perfect colocalization with the GWAS signal (Figures 7B and

7C). As LBH is associated with cell expansion and maintenance

(Lindley et al., 2015), its high expression in plasmablasts might

contribute to its expansion, whereas its downregulation could

lead to DNA damage in other cells (Matsuda et al., 2017).

PTPRC, which codes for the well-known signaling molecule

CD45, also exhibited opposing regulatory functions among

immune cells by a SLE risk allele (Figures 7B and 7C). These sub-

set-specific and opposing eQTLs likely have a great impact on

immune cell orchestration and can be relevant to complex dis-

ease pathogenesis.

DISCUSSION

This report constitutes an initial description of our atlas of

immune cell gene regulation. Our dataset has distinct and ad-

vantageous characteristics compared to previously reported

resources, including comprehensive immune cell subdivision,

variation of immunological conditions among donors and homo-

geneous non-European donors.

In gene-expression analysis, our comparison of multiple IMDs

in a single platform permitted us to characterize each disease

(patient) and identify genes that were associated specifically

with a single disease, as well as pathways that were dysregu-

lated in a group of IMDs. For example, AAV, whose etiology is

largely unknown but involvement of both of the innate and adap-

tive immunity has been inferred (Kitching et al., 2020), showed

upregulation of IL-18-inducible pathways, and the gene-expres-

sion pattern was similar with that of autoinflammatory diseases.

This result suggests the potential of repositioning drugs for auto-

inflammatory diseases as a treatment of AAV and vice versa,

although patient heterogeneity should be considered.

Our dataset enabled us to detect physiological (disease)

context-driven perturbations of eQTL effects in each specific

cell type. Some of the context-dependent eQTLs seemed to

track with disease severity (e.g., IFN signal strength and MAPK

signal strength). The eVariants interacting with these disease-

associated pathways would contribute not only to disease sus-

ceptibility but also to the heterogeneity in inflammatory response

among patients and should be candidates for future studies

about the phenotypic variance within and between IMDs.

We observed an association of IMD-associated genetic vari-

ants and immune cell-type-specific eQTLs. Colocalization anal-

ysis identified that 63% (20/32) of SLE GWAS top variants from

Japanese population colocalized with immune cell eQTLs. This

proportion is higher than that of a previous report in which coloc-

alization of autoimmune disease GWAS and eQTL was esti-

mated to be ~25% using three types of immune cells (Chun

et al., 2017). We surmise that our cell-type-specific eQTLs with

comprehensive immune cell dataset (28 cell types) contributed
12 Cell 184, 1–16, May 27, 2021
to better mapping of GWAS signals. Also, we observed dis-

ease-relevant eQTLs with cell-type-specific effects, directionally

opposite effects among cell types, and context-dependent

effects in specific cell types. These eQTLs were unable to be de-

tected without purifying immune cells, including relatively rare

cell types (e.g., plasmablasts or pDCs).

Finally, most of the large-scale eQTL datasets have been

generated from European donors (GTEx Consortium, 2020;

Chen et al., 2016; Fairfax et al., 2014; Lappalainen et al., 2013;

Nédélec et al., 2016; Quach et al., 2016; Schmiedel et al.,

2018). Our eQTL dataset of Japanese population helped us to

identify eQTL variants in East Asian populations that had not

been detected in European populations due to low allele fre-

quency, as well as fine-mapping causal eQTL variants by taking

advantage of difference in haplotype architecture. Thus, our da-

taset serves as a good resource in improving the functional

annotation of genomic variations.

Limitations of the study
Although our study provides a comprehensive atlas of gene

regulation in immune cells in vivo, there are some limitations.

First, the patient cohort size is different among different dis-

eases; thus, gene-expression or regulation changes in diseases

with small sample sizes might be relatively underestimated

compared to diseases with larger sample sizes. Second,

because this is an observational study, clinical heterogeneity,

especially among medications including glucocorticoids and

other immunosuppressants, exists and may be affecting gene

expression or regulation in part. Third, due to female-biased sus-

ceptibility of IMDs, a large proportion of donors in our dataset

consist of female subjects, which is unlike other large-scale

eQTL datasets and should be interpreted with caution in a

comparative study.
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Revised Japanese criteria for Sjögren’s syndrome (1999): availability and val-

idity. Mod. Rheumatol. 14, 425–434.

G’Sell, R.T., Gaffney, P.M., and Powell, D.W. (2015). A20-Binding Inhibitor of

NF-kB Activation 1 is a Physiologic Inhibitor of NF-kB: A Molecular Switch

for Inflammation and Autoimmunity. Arthritis Rheumatol. 67, 2292–2302.
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Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., and

Tamayo, P. (2015). The Molecular Signatures Database (MSigDB) hallmark

gene set collection. Cell Syst. 1, 417–425.

Lindley, L.E., Curtis, K.M., Sanchez-Mejias, A., Rieger, M.E., Robbins, D.J.,

and Briegel, K.J. (2015). The WNT-controlled transcriptional regulator LBH is

required for mammary stem cell expansion and maintenance of the basal line-

age. Development 142, 893–904.

Liu, J.Z., van Sommeren, S., Huang, H., Ng, S.C., Alberts, R., Takahashi, A.,

Ripke, S., Lee, J.C., Jostins, L., Shah, T., et al.; International Multiple Sclerosis

Genetics Consortium; International IBD Genetics Consortium (2015). Associa-

tion analyses identify 38 susceptibility loci for inflammatory bowel disease and

highlight shared genetic risk across populations. Nat. Genet. 47, 979–986.

Maecker, H.T., McCoy, J.P., and Nussenblatt, R. (2012). Standardizing immu-

nophenotyping for the Human Immunology Project. Nat. Rev. Immunol. 12,

191–200.

Martin, M. (2011). Cutadapt removes adapter sequences from high-

throughput sequencing reads. EMBnet.Journal 17, 10–12.

Martin, F., and Chan, A.C. (2004). Pathogenic roles of B cells in human auto-

immunity; insights from the clinic. Immunity 20, 517–527.

Matsuda, S., Hammaker, D., Topolewski, K., Briegel, K.J., Boyle, D.L., Dowdy,

S., Wang, W., and Firestein, G.S. (2017). Regulation of the Cell Cycle and In-

flammatory Arthritis by the Transcription Cofactor LBH Gene. J. Immunol.

199, 2316–2322.

Matsushita, K., Takeuchi, O., Standley, D.M., Kumagai, Y., Kawagoe, T.,

Miyake, T., Satoh, T., Kato, H., Tsujimura, T., Nakamura, H., and Akira, S.

(2009). Zc3h12a is an RNase essential for controlling immune responses by

regulating mRNA decay. Nature 458, 1185–1190.

Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H.,

Reynolds, A.P., Sandstrom, R., Qu, H., Brody, J., et al. (2012). Systematic

localization of common disease-associated variation in regulatory DNA. Sci-

ence 337, 1190–1195.

Michalska, A., Blaszczyk, K., Wesoly, J., and Bluyssen, H.A.R. (2018). A Pos-

itive Feedback Amplifier Circuit That Regulates Interferon (IFN)-Stimulated

Gene Expression andControls Type I and Type II IFN Responses. Front. Immu-

nol. 9, 1135.

Miyagawa-Hayashino, A., Yoshifuji, H., Kitagori, K., Ito, S., Oku, T., Hirayama,

Y., Salah, A., Nakajima, T., Kiso, K., Yamada, N., et al. (2018). Increase of

MZB1 in B cells in systemic lupus erythematosus: proteomic analysis of bio-

psied lymph nodes. Arthritis Res. Ther. 20, 13.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

See Table S9 for flow-cytometry antibodies N/A N/A

Critical commercial assays

MACSxpress Neutrophil Isolation Kit, human Miltenyi Biotec Cat#130-104-434

EasySep Direct Human Neutrophil Isolation Kit STEMCELL Technologies Cat#19666

RNeasy Micro Kit QIAGEN Cat#74004

MagMAX-96 Total RNA Isolation Kit Thermo Fisher Scientific Cat#AM1830

RNeasy Mini Kits QIAGEN Cat#74104

SMART-seq v4 Ultra Low Input RNA Kit for Sequencing Takara Bio Cat#634894

QIAmp DNA Blood Midi Kit QIAGEN Cat#51185

TruSeq DNA PCR-Free Library prep kit Illumina Cat#20015963

HiSeq SBS Kit v4 Illumina Cat#FC-401-4003

Infinium OmniExpressExome-8 Illumina Cat#20024679

Deposited data

Web-based data browser This paper https://www.immunexut.org/

Gene expression data This paper National Bioscience Database Center

(NBDC): E-GEAD-397

Expression QTL summary statistics (conditional

eQTL analysis)

This paper NBDC: E-GEAD-398

Expression QTL summary statistics (nominal

eQTL statistics, including non-significant associations)

This paper NBDC: E-GEAD-420

Human reference genome NCBI build 38, GRCh38 Genome Reference

Consortium

https://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

1000 Genomes Project reference panel (phase3) Auton et al., 2015 https://www.internationalgenome.org/data

GENCODE annotation v27 (GRCh38) Frankish et al., 2019 https://www.gencodegenes.org/

NIH Roadmap Epigenomics Mapping Consortium Kundaje et al., 2015 https://egg2.wustl.edu/roadmap/web_

portal/processed_data.html

Immune cell ATAC-seq count data Calderon et al., 2019 GEO: GSE118189

Immune cell ATAC-seq bigwig files Calderon et al., 2019 https://s3.amazonaws.com/muellerf/data/

trackhubs/immune_atlas/hub.txt

Stimulated fibroblast-like synoviocytes gene

expression data

Tsuchiya et al., 2020 NBDC: hum0207.v1.RNA.v1

GTEx v8 eQTL summary statistics GTEx consortium, 2020 https://gtexportal.org/home/datasets

eQTL summary statistics of bulk immune-cell eQTL Ishigaki et al., 2017 NBDC: hum0099.v1.eqtl.v1

eQTL summary statistics of DICE database Schmiedel et al., 2018 https://dice-database.org/downloads

Regulatory variants in Survey of regulatory elements

(SuRE) reporter technology

van Arensbergen et al., 2019 https://osf.io/w5bzq/wiki/home/?view

NHGRI-EBI GWAS Catalog Buniello et al., 2019 https://www.ebi.ac.uk/gwas/

eQTL summary statistics of eQTLGen consortium Võsa et al., 2018 https://www.eqtlgen.org/

Tohoku Medical Megabank Organization Tadaka et al., 2018 https://jmorp.megabank.tohoku.ac.jp/

202008/

Cross-mappability and gene-mappability Saha and Battle, 2018 https://figshare.com/collections/

Mappability_Resources/4297352/4

GWAS summary statistics for LDSC Finucane et al., 2015 https://data.broadinstitute.org/alkesgroup/

sumstats_formatted/

MSigDB hallmark gene set collection Liberzon et al., 2015 https://www.gsea-msigdb.org/gsea/msigdb/

collections.jsp
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

PLINK (v1.9) Purcell et al., 2007 https://www.cog-genomics.org/plink2

cutadapt (v1.16) Martin, 2011 https://cutadapt.readthedocs.io/en/stable/

index.html

fastx-toolkit (v0.0.14) N/A http://hannonlab.cshl.edu/fastx_toolkit/

STAR (v2.5.3) Dobin et al., 2013 https://github.com/alexdobin/STAR

HTSeq (v 0.11.2.) Anders et al., 2015 https://github.com/htseq/htseq

bcl2fastq (v 2.20.0) Illumina https://jp.support.illumina.com/sequencing/

sequencing_software/bcl2fastq-conversion-

software.html

GATK (v 4.0.6.0) DePristo et al., 2011 https://gatk.broadinstitute.org/hc/en-us

BWA-MEM (v 0.7.17) Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

BEAGLE (v 5.1) Browning et al., 2018 https://faculty.washington.edu/browning/

beagle/beagle.html#citation

QTLtools (v1.2) Fort et al., 2017 https://qtltools.github.io/qtltools/

CAVIAR (v2.0.0) Hormozdiari et al., 2014 https://github.com/fhormoz/caviar

eCAVIAR (v2.0.0) Hormozdiari et al., 2016 https://github.com/fhormoz/caviar

CIRCOS (v0.69-9) Krzywinski et al., 2009 http://circos.ca/

LDSC (v1.0.1) Bulik-Sullivan et al., 2015 https://github.com/bulik/ldsc

Meta-Tissue Sul et al., 2013 http://genetics.cs.ucla.edu/metatissue/

R (v3.4 or v3.5, depending on the time of the analysis) N/A https://www.r-project.org/

edgeR (v3.24.3) Robinson et al., 2010 https://bioconductor.org/packages/release/

bioc/html/edgeR.html

sva (v3.30.1) Leek et al., 2012 https://www.bioconductor.org/packages/

release/bioc/html/sva.html

lme4 (v1.1.21) Bates et al., 2015 https://cran.r-project.org/web/packages/

lme4/index.html

TCC (v1.22.1) Sun et al., 2013 https://www.bioconductor.org/packages/

release/bioc/html/TCC.html

WGCNA (v1.67) Langfelder and Horvath, 2008 https://cran.r-project.org/web/packages/

WGCNA/index.html

limma(v3.38.3) Ritchie et al., 2015 http://bioconductor.org/packages/release/

bioc/html/limma.html

mashr (v0.2.21) Urbut et al., 2019 https://github.com/stephenslab/mashr

peer (v1.0) Stegle et al., 2012 https://github.com/PMBio/peer

lmerTest (v3.1.1) Kuznetsova et al., 2017 https://cran.r-project.org/web/packages/

lmerTest/index.html

motifbreakR (v1.12.0) Coetzee et al., 2015 https://bioconductor.org/packages/release/

bioc/html/motifbreakR.html

coloc (v3.2.1) Giambartolomei et al., 2014 https://cran.r-project.org/web/packages/

coloc/index.html

Other

Cell-type-specific expressed genes This paper Table S2

Genes especially dysregulated in specific diseases This paper Table S3

Context-dependent eQTLs This paper Table S4

Expression QTL effects of Immune disease

GWAS variants

This paper Table S5
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Keishi Fujio (fujiok-int@

h.u-tokyo.ac.jp).
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Materials availability
This study did not generate new unique reagents.

Data and code availability
Gene expression data and the summary statistics of eQTL analysis were deposited in the National Bioscience Database Center

(NBDC) Human Database (https://humandbs.biosciencedbc.jp/en/) with the accession number of E-GEAD-397, E-GEAD-398 and

E-GEAD-420. These data can be downloaded without restriction. We used publicly available software for the analyses. Custom

code is available from the corresponding authors upon reasonable request. Data can also be browsed at our website at https://

www.immunexut.org/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study was approved by the Ethics Committees of the University of Tokyo, and written informed consent was obtained from all

subjects enrolled. Age and sex of all the participants are deposited in NBDC with the same accession number as denoted above.

Inclusion and exclusion criteria for our cohort is described in Method Details.

METHOD DETAILS

Inclusion and exclusion criteria
ImmuNexUT consists of patients with 10 categories of IMDs and healthy volunteers.

The systemic sclerosis (SSc) cohort comprised of patients who had attended the Department of Allergy and Rheumatology at Uni-

versity of Tokyo Hospital or Department of Rheumatology at Tokyo Metropolitan Komagome Hospital, who met the 2013 American

College of Rheumatology (ACR)/ European League Against Rheumatism (EULAR) classification criteria for Systemic Sclerosis (van

den Hoogen et al., 2013) and who were taking no more than 20 mg prednisolone daily.

The systemic lupus erythematosus (SLE) cohort comprised of patients who had attended the Department of Allergy and Rheuma-

tology at University of Tokyo Hospital, Division of Rheumatic Diseases at National Center for Global Health andMedicine or Immuno-

Rheumatology Center at St. Luke’s International Hospital, whomet the 1997 revised version of ACRSLE criteria (Hochberg, 1997). Of

the enrolled patients, 63%had active disease (Yee et al., 2011) with SLEDAI-2000 > 3, and the other cases had inactive disease at the

time of blood withdrawal.

The idiopathic inflammatory myopathy (IIM) cohort comprised of patients who had attended to the Department of Allergy and

Rheumatology at University of Tokyo Hospital or Division of Rheumatology at the Jikei University Hospital and who met either one

of following criteria: Bohan and Peter criteria (Bohan and Peter, 1975a, 1975b), the European Neuromuscular Center criteria

(Hoogendijk et al., 2004), Sontheimer criteria (Sontheimer, 2002) or Griggs criteria (Griggs et al., 1995). Patients taking more than

11 mg prednisolone daily were excluded. Clinical diagnosis of the patients was dermatomyositis in 30, clinically amyopathic derma-

tomyositis in 15, polymyositis in 11, immune-mediated necrotizing myopathy in 4 and inclusion body myositis in 2, and the other 3

cases were not clearly classified into these categories. 23 cases had active disease and required subsequent initiation or increase of

immunomodulatory drugs.

Behçet’s disease (BD) patients were recruited from the Department of Allergy and Rheumatology at University of Tokyo Hospital.

Patients who met both the criteria of the Behçet’s Disease Research Committee of Japan and the International Criteria for Behçet’s

Disease (International Study Group for Behçet’s Disease, 1990) were included. None of the participants were receiving biologics, and

none of the participants was in the acute or active phase.

Sjögren’s syndrome (SjS) patients were recruited from the Department of Allergy and Rheumatology at University of Tokyo

Hospital. Patients who met the criteria of the Sjögren’s syndrome Research Committee of Japan (Fujibayashi et al., 2004) and

clinically diagnosed as primary Sjögren’s syndrome were included.

Rheumatoid arthritis (RA) patients were recruited from the Department of Allergy and Rheumatology at University of Tokyo

Hospital. Patients who met the 2010 ACR/EULAR classification criteria for rheumatoid arthritis (Aletaha et al., 2010) were included.

DAS28ESR (median, interquartile range) was 4.99 (4.35-5.97), indicating that the majority of the patients had moderate to high dis-

ease activity.

Adult-onset Still’s disease (AOSD) patients were recruited from the Department of Allergy and Rheumatology at University of Tokyo

Hospital. Patients who met the Yamaguchi’s criteria (Yamaguchi et al., 1992) and who were taking no more than 10 mg prednisolone

daily were enrolled.

ANCA-associated vasculitis (AAV) patients were recruited from the Department of Allergy and Rheumatology at University of Tokyo

Hospital and Immuno-Rheumatology Center at St. Luke’s International Hospital. Patients classified as granulomatosis with polyan-

giitis ormicroscopic polyangiitis followingWatts algorithm (Watts et al., 2007) and positive for either myeloperoxidase-anti-neutrophil

cytoplasmic antibody or proteinase3-anti-neutrophil cytoplasmic antibody were included. Patients taking more than 10 mg prednis-

olone daily were excluded.
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Patients with Takayasu arteritis (TAK) were recruited from the Department of Allergy and Rheumatology at University of Tokyo Hos-

pital. Patients who fulfilled the American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis (Arend et al.,

1990) were included. Patients clinically diagnosed as giant cell arteritis or receiving biologics were excluded.

Patients with mixed connective tissue disease (MCTD) were recruited from the Department of Allergy and Rheumatology at

University of Tokyo Hospital. Patients who fulfilled the 1996 revised version of Kasukawa’s criteria (Kasukawa, 1999) were included.

Patients clinically diagnosed as overlap syndrome were excluded.

Patients with apparent malignancies or active infections at the time of enrollment were excluded.

The inclusion criteria for healthy volunteers were people with no apparent co-morbidities, no direct family history of autoimmune

diseases, and no use of prescription drugs or supplements. Age and sex were matched with patient cohort as much as possible.

Samples were collected from the University of Tokyo, the Jikei University School of Medicine, St. Luke’s International Hospital,

National Center for Global Health, and Medicine and Tokyo Metropolitan Komagome Hospital with approval by the Ethics Commit-

tees at each site.

Sample collection and processing
Wemodified our sample collection protocol during this study. Samples before and after modification are termed phase 1 and phase 2

samples, respectively. In both phases, peripheral blood mononuclear cells (PBMCs) were isolated by density gradient separation

with Ficoll-Paque (GE healthcare) immediately after blood drawing. Erythrocytes were lysed with potassium ammonium chloride

buffer, and non-specific binding was blocked with Fc-gamma receptor antibodies. In phase 1, we sorted PBMCs into 19 immune

cell subsets (Table S8) with purity > 99% using a MoFlo XDP instrument (Beckman Coulter). Sorted cells were lysed and stored at

�80�C. Total RNA was extracted using RNeasy Micro Kits (QIAGEN). Libraries for RNA-seq were prepared using SMART-seq

v4 Ultra Low Input RNA Kit (Takara Bio). In phase 2, we sorted PBMCs into 26 immune cell subsets (Table S8) with purity > 99% using

a 14-color cell sorter BD FACSAria Fusion (BD Biosciences). Sorted cells were lysed and stored at �80�C. Total RNA was extracted

using MagMAX-96 Total RNA Isolation Kits (Thermo Fisher Scientific). Libraries for RNA-seq were prepared with the same proced-

ures used in phase 1. In both phases, we intended to collect 5,000 cells with at least 1,000 cells per subset (5,000 cells were collected

for > 80% of samples). We followed previously reported immune cell definitions provided by the Human Immunology Project

(Maecker et al., 2012) for the flowcytometry staining panel with slight modification due to the availability of labeled antibodies in

each phase (Tables S8 and S9). In addition, neutrophils were collected with EasySep Direct Human Neutrophil Isolation Kits

(STEMCELL Technologies) or MACSxpress Neutrophil Isolation Kits human (Miltenyi Biotec) with an aim of 2 3 106 cells, lysed

and stored at �80�C, followed by RNA isolation with an RNeasy Mini Kits (QIAGEN) and library preparation with SMART-seq

v4 Ultra Low Input RNA Kits (Takara Bio).

Genomic DNA was isolated from peripheral blood using QIAmp DNA Blood Midi kit (QIAGEN) and libraries for whole genome

sequencing were prepared using TruSeq DNA PCR-Free Library prep kit (Illumina).

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA sequencing
Samples failing any of the quality control steps (RNA quality and quantity, PCR amplification, library fragment size) were eliminated

from further downstream steps. In total, we performed RNA-seq for 10,102 samples (2,942 samples in phase 1 and 7,160 samples in

phase 2) from 423 donors. Libraries were sequenced on the HiSeq 2500 Illumina platform to obtain 100-bp paired-end reads with

HiSeq SBS Kit v4 (Illumina), generating a total of over 211 billion reads.

QC of gene expression data
From sequenced reads, adaptor sequences were trimmed using cutadapt (v1.16). In addition, 30- ends with low-quality bases (Phred

quality score < 20) were trimmed using the fastx-toolkit (v0.0.14). Reads containingmore than 20% low-quality bases were removed.

Subsequently, readswere aligned against theGRCh38 reference sequence using STAR (v2.5.3) (Dobin et al., 2013) in two-passmode

with Gencode version 27 annotations (Frankish et al., 2019). For gene level quantification, we combined all isoforms of a gene into a

single transcript as described elsewhere (Battle et al., 2017) and used it for annotations. We excluded samples with uniquely mapped

read rates < 90% (with the exception of < 70% for plasmablasts and < 85% for the other B cell subsets, which have a nonnegligible

number of unmapped reads because of highly variable B cell receptors) or unique read counts < 6 3 106. A median of 10.1 million

paired fragments were uniquely mapped per sample, and only concordantly and uniquely mapped read pairs were used for analysis.

Expression was quantified using HTSeq (v 0.11.2.) (Anders et al., 2015).

For QC of the expression data, in each cell population, we filtered low count genes (< 10 in > 90%of samples), normalized between

samples with a trimmed mean of M values (TMM) implemented in edgeR (Robinson et al., 2010) software, converted to log-trans-

formed count per million (CPM), removed batch effects using ComBat software (Johnson et al., 2007) and computed inter-sample

Spearman’s correlations of expression levels between each sample and the remaining samples from the same cell subset. We

excluded 72 samples with mean correlation coefficients less than 0.9. Moreover, we excluded all the samples from 5 donors from

whom 3 or more samples were excluded as outliers.
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Whole genome sequencing and variant calling
Whole genomes were sequenced on Illumina’s HiSeq X with 151-bp pair-end reads. The mean coverage was 41x. The BCL binary

format was converted into the FASTQ format using bcl2fastq (v 2.20.0) (Illumina). Data processing was performed based on the stan-

dardized best-practice method proposed by GATK (v 4.0.6.0) (DePristo et al., 2011). Briefly, FASTQ files were converted to SAM files

with FastqToSam, adapters marked with MarkIlluminaAdapters, and reads were aligned to the reference human genome (GRCh38)

using BWA-MEM (v 0.7.17, default parameters) (Li and Durbin, 2009). The duplicate reads were marked with MarkDuplicates. Base

quality score recalibration was performed with default references. Variants were called with HaplotypeCaller with ‘‘–pcr-indel-model

NONE’’ parameter. Called GVCFs from each sample were jointly genotyped and merged using GenomicsDBImport, Genoty-

peGVCFs and MergeVcfs. Variants with ExcessHet > 54.69 were filtered. Variant quality score recalibration was performed for

both single nucleotide variants (SNVs) and indels with GATK recommended references. After applying variant quality score recalibra-

tion to merged VCF, genotype quality (GQ) scores were recalculated for all calls based on allele frequencies in the 1000 Genomes

Project, phase 3, East Asian (EAS) population using CalculateGenotypePosteriors. Samples with genotyping call rates < 99%

were removed. Multi-allelic sites were split into bi-allelic. Calls with GQ < 20 and/or DP < 5 were assigned to missing. Variants

with genotyping call rate < 85% and/or HWE P value < 1.0 3 10�6 were removed. Finally, we used BEAGLE (v 5.1) (Browning

et al., 2018) to impute missing genotypes. Combined with the QC of RNA-seq data, 416 samples were utilized for the subsequent

analysis. Variants with minor allele frequency < 1% were excluded, yielding a total of 8,105,611 autosomal variants (7,154,278

SNVs and 951,333 indels).

Validation of WGS calls
For 2 donors, we obtained genome-wide SNP genotypes by using the SNP microarray approach (Infinium OmniExpressExome-8

[Illumina]) and confirmed high concordance (> 99.98%) with WGS calls.

We performed principal component analysis (PCA) of called genotype data jointly with 1000G phase 3 samples after removing the

HLA region and pruning. As expected, our Japanese samples clustered together with 1000G EAS samples (Figure S3A).

We compared the allele frequencies of our genotype data with Tohoku Medical Megabank Organization (ToMMo) data (Tadaka

et al., 2018), a large scale WGS reference panel from Japan, and there was a good concordance in allele frequencies for SNVs (Pear-

son’s correlation 0.998, Figure S3B) and indels (Pearson’s correlation 0.995, Figure S3C).

Analyzed samples
For subsequent analyses, we utilized 9,852RNA-seq samples from 416 donors that had passedRNA-seqQCand had corresponding

WGS data that had also passed QC.

Variance decomposition
For those genes whose expression was more than 5 in at least 80% of samples in at least one cell type, the count data from all sam-

ples (except for neutrophils, which were collected without using FACS) were normalized between samples with TMM, converted to

CPM, log transformed and batch effects removed (i.e., study phases) with Combat (Leek et al., 2012) software. Normalized data were

fit to the following linear mixed model using the lme4 package (Bates et al., 2015):

Expressionz ð1jCelltypeÞ+ ð1jDiagnosisÞ+ ð1jIndividualÞ
Subsequently, we calculated the variance explained by each varia
ble for each gene. Standard deviation was estimated by bootstrap-

ping of samples 1,000 times with the bootMer function.

Hierarchical clustering
Twenty-five immune cell subsets that did not showpopulation overlapwith other sorted immune cells (i.e., all subsets except forMem

CD4, MemCD8 and CLMono) were utilized for hierarchical clustering. In each cell subset, we filtered genes expressed at low levels,

and counts were normalized, and cleaned for batch effects with Combat software. Then, Spearman’s correlation distance of the top

5,000 variable genes was used for hierarchical clustering with Ward’s method.

Cell type-specific genes
Cell type-specific genes were identified using 25 immune cell subsets denoted above from healthy volunteers in phase 2. We filtered

genes with low expression levels, and counts were normalized, averaged and cell type-specific genes were identified based on their

Shannon entropies using the ROKU (Kadota et al., 2006) function in TCC package (Sun et al., 2013).

Transcriptome signature construction
Nineteen cell subsets were consistently collected from almost all the individuals (> 395 individuals; all subsets except for LDG, Fr. I

nTreg, Fr. III T, CM CD8, TEMRA CD8, EM CD8, Mem CD8, Int Mono and NC Mono). Those subsets were utilized for transcriptome

signature comparisons. In each immune cell data, genes expressed at low levels were filtered and residual expression data were

normalized with TMM, converted to CPM, log transformed and batch effects removed with Combat software.
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We applied the weighted gene co-expression network analysis (WGCNA) (Langfelder and Horvath, 2008) algorithm to normalized

data of each cell type with a ‘‘signed network’’ option and soft threshold power with the adjacency matrix set to 8. After making mod-

ules, gene modules whose first eigenvectors were highly correlated (Pearson’s correlation > 0.9) were merged and modules with

more than 2,000 genes were removed in each subset to reduce the redundancy and uncertainty of the modules. This procedure

generated a total of 391 gene modules (median of 22 for each cell type) that were used for subsequent analyses.

Eigenvectors of each module were then fit to the following model with linear regression:

EigenvectorzDiagnosis+ logðPSLmg + 0:1Þ+ logðAgeÞ+StudyPhase+Sex
None of the modules showed a significant association with the s
tudy phase, meaning successful cleaning of batch effects by the

previous procedures. We set healthy volunteers as the control for the ‘‘Diagnosis’’ term. After multiple test corrections, 238 out of

391 modules were significantly associated with at least 1 diagnosis (FDR < 0.01), whose standardized regression coefficients

were utilized for clustering analysis (Figure 1E). Clinical diagnosis was hierarchically clustered based on Pearson’s correlation dis-

tance of standardized regression coefficients, while modules were grouped by k-means clustering.

For clustering analysis of individuals (Figure S2B), we utilized 45 modules which were significantly upregulated in some IMDs and

annotated to specific pathways by cytokine pathway enrichment analysis. Eigenvectors of modules were used for k-means

clustering.

Cytokine pathway enrichment analysis
To associate gene modules to biological pathways, we utilized an independent dataset which we reported recently (Tsuchiya

et al., 2020). In this dataset, fibroblast-like synoviocytes (FLS) from RA and osteoarthritis patients were treated with 8 kinds of

cytokines in vitro, and RNA-seq was performed on unstimulated or stimulated samples. In order to make gene modules which

are associated with specific stimulation patterns, we performed WGCNA with the FLS dataset with the same parameters as de-

noted above except for setting a soft threshold power to 15, and eigenvectors were fit to the following model with linear

regression:

EigenvectorzStimulation+Diagnosis
We set non-stimulated samples as the controls for the ‘‘Stimulati
on’’ term, and standardized regression coefficients of each stimu-

lation were compared for each module (Figure S2A), which showed stimulation-dependent expression perturbation patterns.

We utilized FLS gene modules that were significantly associated with at least 1 stimulation condition (FDR < 0.01) for comparison

with ImmuNexUT gene modules. Gene set enrichment was evaluated with a one-sided Fisher’s exact test.

Genes especially dysregulated in specific diseases
We sought to identify genes which are especially up- or downregulated in specific IMDs. First, we identified differentially expressed

genes (DEGs) by comparing each IMD versus healthy volunteers in 19 cell subsets which were collected from almost all the individ-

uals. The limma package (Ritchie et al., 2015) with voom transformation was utilized. Sex, age, prednisolone dosage and study phase

were treated as covariates. To improve the power to estimate disease specific and shared DEGs, we utilizedmash (Urbut et al., 2019)

software with effect sizes of each comparison and their standard deviations as input. Geneswith FDR < 0.05 in any of the disease-by-

disease comparisons were analyzed. All the other genes were utilized to fit the mash model. Mash outputs improved effect

estimates of each comparison and the local false sign rate (LFSR), which is analogous to FDR while considering the sign of the as-

sociation. We made a list of genes especially dysregulated in each disease by applying the following 3 criteria; i) LFSR was < 0.05, ii)

diseases with LFSR < 0.05 were 2 or less, iii) the absolute values of effect estimates are 1.4 times or more higher than those of the

other diseases.

Data normalization and eQTL analysis
After sample QC, genes expressed at low levels (< 5 count in more than 80% samples or < 0.5 CPM in more than 80% samples) were

filtered out in each cell subset. The residual expression data were normalized between samples with TMM, converted to CPM and

then normalized across samples using an inverse normal transform. A Probabilistic Estimation of Expression Residuals (PEER)

method (Stegle et al., 2012) was applied to normalized expression data to infer hidden covariates. We empirically tested for the num-

ber of eGenes with incrementation of PEER factors. To maximize the number of eGenes and avoid potential overfitting, 50 PEER fac-

tors for cell subsets with > 350 donors and 30 PEER factors for cell subsets with% 350 donors were chosen for correction of hidden

covariates (Figures S3D and S3E). The top 2 genetic principal components, sample collection phase, clinical diagnosis, sex and

PEER factors were utilized as covariates for eQTL analysis. Mem CD8s, which were collected in phase 1 and divided into CM

CD8 and EM CD8 in phase 2, were analyzed jointly with EM CD8 for eQTL analysis because the majority of the Mem CD8 population

consisted of EM CD8.

To evaluate the concordance of WGS and RNA-seq data, we used the mbvmodule fromQTLtools (Fort et al., 2017) and confirmed

a perfect match of RNA-seq and WGS labels.
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For each cell subset, we used a QTLtools permutation pass with 10,000 permutations to obtain gene-level nominal P value thresh-

olds corresponding to FDR < 0.05. We subsequently performed forward-backward stepwise regression eQTL analysis with a

QTLtools conditional pass.

Epigenome mark enrichment analysis
To evaluate the enrichment of top eVariants to epigenome marks (differentially accessible peaks or Roadmap annotation), we con-

structed random variants sets that were matched to top eVariants based on distance to the nearest TSS, minor allele frequency and

chromosome. We compared the overlap with epigenome marks between random variants sets and real ones.

The chromatin state data were obtained from the Roadmap Epigenome Project. We utilized 18-statemodels. We considered TssA,

TssAFlnk, TssFlnk, TssFlnkD and TssFlnkU as promoter regions, and Enh, EnhA1, EnhA2, EnhG, EnhG1, EnhG2 and EnhWk as

enhancer regions. For analysis of enhancer or promoter enrichment (Figure 2B), we utilized 17 immune cell subsets that had relevant

cell annotations in Roadmap project data (i.e., CL Mono [Roadmap ID: E029], CD16p Mono [E029], DN B[E032], Fr. II eTreg [E044],

Mem CD4 [E037], Mem CD8 [E048], Naive B [E032], Naive CD4 [E039], Naive CD8 [E047], NK [E046], Plasmablast [E032], SM B

[E032], Tfh [E045], Th1 [E045], Th17 [E042], Th2 [E045] and USM B [E032]).

ATAC-seq data of immune cells (Calderon et al., 2019) were obtained fromGEOunder accessionGSE118189. For comparisonwith

each cell eQTL data, we utilized read count data of non-stimulated immune cell subsets which had analogous cell types in Immu-

NexUT. For each immune cell type, the read count of peakswithmeanCPM>1were comparedwith the other cell types using edgeR,

and the top 14,000 differentially accessible peaks were utilized for enrichment analysis. For comparison with IMD-specific eQTLs, we

utilized differentially accessible peaks after stimulation (Calderon et al., 2019). Calderon et al., strongly stimulated various kinds of

immune cells in vitro and cataloged differentially accessible peaks after stimulation. We aggregated differential peaks induced after

stimulation (FDR < 0.01 and log Fold change > 0) in any of the cell types and utilized them as ‘‘peaks induced by stimulation.’’ For

comparison, we utilized peaks in non-stimulated immune cells that were not significantly changed after stimulations as ‘‘unchanged

peaks.’’ For visualization of ATAC-seq peaks, we utilized bigwig files provided by the authors (https://s3.amazonaws.com/muellerf/

data/trackhubs/immune_atlas/hub.txt) and visualized them with the UCSC genome browser (http://genome.ucsc.edu/.).

Comparison of eQTL effect sizes
In order to compare effect sizes and cell type specificities of eQTLs, we utilized mash (Urbut et al., 2019) for top eVariants. The anal-

ysis was performed with eQTL beta coefficients and their standard errors as inputs. Randomly selected SNP-gene pairs (220,000)

were used to fit the mash model. If the gene was not expressed in the subset, the beta coefficient was set to 0. Effect size estimates

and LFSR outputted by mash were used as metrics of QTL magnitude and significance.

Comparison of eQTL effects between IMD patients and healthy volunteers
For comparison of eQTL effects between IMD patients and healthy volunteers, we performed forward-backward stepwise eQTL

analysis in healthy volunteer group and IMD patient group separately. For this comparison, cell types were limited to 20 cell types

that were obtained from almost all the donors from both groups, variants with minor allele frequency > 0.1 in both groups, and genes

with R 5 count in more than 20% samples besides R 0.5 CPM in more than 20% samples in both groups. Obtained eQTL beta

coefficients and their standard errors for top eVariants in either groupwere utilized as inputs tomash (in total 40 cell type-group pairs).

For stringency, we defined eQTLs with LFSR < 5% in IMD patients and > 25% in healthy volunteers as IMD specific eQTLs, and

vice versa. Expression QTLs with LFSR < 5% in both groups were defined as eQTLs significant in both. For the comparative

analysis (Figure 2F), the effect estimates of top eVariants of each cell type were compared between IMD patients and healthy

volunteers.

Comparison with other data
We compared beta coefficients of our eQTLs with the eQTLs in a study of 105 healthy Japanese volunteers (Ishigaki et al., 2017).

Naive CD4, naive B, NK and CL monocyte eQTLs were compared with bulk CD4, B, NK and monocyte eQTLs from the previous

study. Only top eVariants in this study that achieved FDR < 0.05 in the previous study were considered (Figure 3A).

In addition, the latest dataset of whole blood cis-eQTLs consisting of > 30,000 Europeans (Võsa et al., 2018) was downloaded from

the eQTLGen website https://www.eqtlgen.org/ on 1/29/2020 and compared with our dataset. Only genes and variants analyzed in

both datasets were utilized for all the comparison analyses.

Fine-mapping of eQTLs
We fine-mapped eQTL variants of GTEx v8 whole blood data of European ancestry and ImmuNexUT classical monocytes and neu-

trophils. In order to assess loci whose eQTL causal variants were shared between 2 datasets, we limited our analysis to eVariants that

were polymorphic in both, eGenes that were significant in both and the eGene whose top eVariant in GTEx had a P value < 13 10�5 in

ImmuNexUT. These limitations resulted in 2,575 genes for classical monocytes and 2,359 genes in neutrophils. For fine-mapping of

GTEx and our eQTLs, we ranked eVariants by P values in GTEx and analyzed the top 50 variants with CAVIAR (Hormozdiari et al.,

2014) while permitting up to 5 causal variants. For joint fine-mapping analysis, we utilized eCAVIAR (Hormozdiari et al., 2016) for

the same set of variants while permitting up to 5 causal variants. Our whole genome data were utilized for estimating LD for Japanese,
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and the 1000 genomes project phase 3 European samples were used for estimating LD for Europeans. We compared the

number of variants in fine-mapped credible sets that were assumed to include all the causal variants with 95% confidence (95%

credible set).

To assess the functional relevance of eQTLs, we utilized 18,734 autosomal variants that had significant impacts on regulatory ac-

tivity using the survey of regulatory elements (SuRE) reporter technology (van Arensbergen et al., 2019) in K562 cells. We made

10,000 null sets of variants from 5,748,566 autosomal variants that were analyzed in SuRE study while adjusting for the distance

to TSS with SuRE significant variants. The enrichment score was calculated by dividing the observed overlapped number of variants

by the mean of the number of overlaps in the null sets. Confidence intervals were estimated using 10,000 times bootstrapping of

randomly sampled null sets with replacement.

Context-dependent eQTL analysis
We tested for the significance of the interaction between genome-wide gene expression and eQTL effects by performing a likelihood

ratio test between the 2 nested models using the R anova function (two-sided). The null model, H0, and alternative model, H1 are

detailed in the following equations:

H0 : EzI+ b1G+ b2P
H1 : EzI+ b1G+ b2P+ b3P3G
where E is the normalized eGene expression, I is the intercept, G
 is the eVariant genotype, P is the normalized proxy gene (pGene)

expression, and b1, b2 and b3 are the regression coefficients.

We normalized the expression of eGenes and pGenes in a different way. The gene expression data of eGenes were normalized

between samples with TMM, converted to CPM, normalized across samples using an inverse normal transform and corrected us-

ing covariates for the top 2 genetic principal components, sample collection phase, clinical diagnosis, sex and PEER factors (the

same number used in the eQTL analysis). The gene expression data of pGenes were normalized between samples with TMM,

converted to CPM, normalized across samples using an inverse normal transform and corrected using covariates for the top 2

genetic principal components, sample collection phase and sex, but not for the other factors because they would remove biolog-

ically meaningful diversity across donors, following the concept of the previous study (Zhernakova et al., 2017). In the analysis for

estimating the relevance of disease variance (Figure S4C), pGenes were additionally corrected using clinical diagnosis as

covariates.

We excluded interactions of pGenes located within 1Mbp from eVariants, as we wanted to minimize the effect of eQTL pleiotropy.

We also excluded cross-mappable gene pairs (Saha andBattle, 2018) or low-mappability genes (Saha andBattle, 2018) to reduce the

technical false positives. For each top eVariant, we permutated the pGene label 200 times, modeled the null distribution of P values

using a beta-distribution following the concept of FastQTL (Ongen et al., 2016) and calculated adjusted P values of the best asso-

ciated pGene. Then, in each cell subset, we adjusted for the number of top eVariants with the Benjamin-Hochbergmethod and calcu-

lated the threshold of adjusted P values corresponding to FDR < 0.05. For each eQTL-pGene pair, adjusted P values were converted

to Z scores and wemultiplied it by the sign according to the effect of pGene expression on eQTL effect sizes (+1 for magnifying inter-

action and �1 for dampening interaction, which we call adjusted Z score).

To facilitate interpretation, we only considered positive Z score interactions for CIRCOS visualization (Krzywinski et al., 2009)

(Figure 5A). In addition, to make robust pGene clusters and eVariant clusters, we limited the analysis to pGenes that had more

than 5 strong interactions (Z > 3.5), eVariants that had more than 1 strong interaction (Z > 3.5) or eVariants that had IMD GWAS var-

iants in LD (r2 R 0.8 in EUR and EAS). These pGenes and eVariants were each clustered into 8 groups by K-means clustering based

on interaction Z scores, and strong interactions (Z > 3.5) were visualized as links (Figure 5A). For visualization of the interactions of

specificGWAS loci, interactionswith Z > 2.5were linked, and in order to overview the interactionswith annotated gene sets, the same

set of filtered pGenes as Figure 5A were utilized (Figures 6D and 6F).

To infer events that were represented by pGenes, we compared pGeneswith annotated gene sets. Interferon signature geneswere

defined as the union of ‘‘HALLMARK_INTERFERON_ALPHA_RESPONSE’’ and ‘‘HALLMARK_INTERFERON_GAMMA_RESPONSE’’

from MSigDB hallmark gene sets (Liberzon et al., 2015). Cell cycle associated genes were extracted from ‘‘HALLMARK_E2F_

TARGETS’’ from MSigDB hallmark gene sets. DN2 marker genes were defined as upregulated genes in DN2 cells, as recently

described (Jenks et al., 2018). Genes upregulated and downregulated in aging were defined from our dataset. After fitting the

following formula with linear mixed model,

Expressionz ð1jCelltypeÞ + ð1jDiagnosisÞ + ð1jIndividualÞ + logðAgeÞ

+ logðPSLmg + 0:1Þ
P value corresponding to the age term was calculated with the lm
erTest (Kuznetsova et al., 2017) R package and genes with FDR <

0.01 were defined as up- or downregulated genes with aging. The gene sets are detailed in Table S10. The overlap P value of each

pGene cluster and gene sets were calculated with one-sided Fisher’s exact test.
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STAT1 and STAT2 binding motifs were evaluated using the motifbreakR (Coetzee et al., 2015) package with default parameters,

and we considered SNPs with at least one allele in their LD proximities (r2R 0.95) achieving a motif matching p value below 13 10�5

with the information content method as binding motif disrupting SNPs.

For the pathway enrichment analysis of context-dependent eGenes, we compared eGenes with MSigDB immunologic signature

gene sets (Godec et al., 2016). From the significantly enriched pathways, we illustrated the result with ‘‘GSE13485_CTRL_VS_

DAY7_YF17D_VACCINE_PBMC_DN’’ (that was the most significantly enriched among all MSigDB immunologic signature gene

sets), ‘‘GSE18791_UNSTIM_VS_NEWCATSLE_VIRUS_DC_6H_DN’’ and ‘‘GSE14000_UNSTIM_VS_16H_LPS_DC_TRANSLATED_

RNA_DN’’ (Figure S4D). Disease variance-associated eGenes (Figure S4D) were defined as context-dependent eGenes for which

the absolute value of interaction Z score dropped more than 0.5 after regressing out disease variance from the pGene expression

data in any cell type. With this definition, 626 genes were classified as disease variance-associated eGenes.

LD score regression analysis
We initially fine-mapped our eQTLs with CAVIAR (Hormozdiari et al., 2014), mademaximal posterior inclusion probability annotations

(MaxCPP) as previously reported (Hormozdiari et al., 2018) and performed tissue-by-tissue stratified LD score regression (S-LDSC)

(Bulik-Sullivan et al., 2015; Finucane et al., 2015) adjusting for functional annotation (‘‘baseline model’’ provided by the developers).

To evaluate the effect of cell type-shared eQTLs, we made meta-analyzed annotation of 6 representative immune cell subset

eQTLs (Mem CD4, Mem CD8, naive B, CL Mono, NK and Neu) using linear mixed model based meta-analysis (Sul et al., 2013).

We utilized fixed-effect P values after meta-analysis and fine-mapped eQTLs with CAVIAR. Subsequently, we obtained MaxCPP

of meta-analysis annotation, which we call ‘‘Meta tissue’’ annotation. Meta tissue annotation showed significant heritability enrich-

ment for some traits (Figure S4E). To consider tissue-shared eQTL effects together with tissue-specific eQTL effects, we jointly re-

gressed LD scores for each cell eQTL annotation and meta-tissue annotation together with functional annotation.

Formatted GWAS summary statistics for LDSC by developers were downloaded from https://alkesgroup.broadinstitute.org/

sumstats_formatted/.

Comparison with GWAS catalog variants
Summary statistics were downloaded from the NHGRI-EBI GWAS Catalog (Buniello et al., 2019) on 04/07/2019. Variants within HLA

regions were excluded from the analysis. Traits under ontology EFO0005140 were utilized as ‘‘Immune mediated diseases.’’ Traits

under ontology EFO0000589 and EFO0000319 were utilized as ‘‘Metabolic traits’’ and ‘‘Cardiovascular traits’’ respectively after

manual exclusion of immune-associated traits. All variants with p < 5.0 3 10�8 and polymorphic in the Japanese population were

pruned using PLINK (Purcell et al., 2007) based on 1000G EUR reference panel with the threshold r2 < 0.1 and used for subsequent

analysis.

We counted the number of eQTL variants in LDwith GWAS top variants (r2R 0.8 in both EAS and EUR populations for ImmuNexUT

eQTLs and only in EUR population for GTEx eQTLs) and assessed their relative enrichment compared to random variants. We made

100,000 sets of random variants of GWAS top variants that were adjusted for distance to TSS, minor allele frequency in the EUR pop-

ulation and the number of LD variants in the EUR population and polymorphic in the Japanese population. Enrichment scores were

calculated by dividing the observed overlapped number of variants by the mean of the number of overlaps in the null sets.

To assess the enrichment of context-dependent eQTLs to GWAS variants, we compared them to all top eVariants in ImmuNexUT.

For this purpose, we pruned context-dependent eQTLs and all top eVariants, and compared the number of variants that were in LD

(r2 R 0.8 in both EAS and EUR populations) with a pruned set of GWAS variants. P values were calculated using two-sided Fisher’s

exact test.

Colocalization analysis of eQTL and SLE GWAS
From Japanese SLEGWAS summary statistics, we analyzed 32 loci outside the HLA region that fulfilled either of the following criteria;

i) It achieved genome-wide significance (p < 5.03 10�8), ii) Different population SLE GWAS achieved genome-wide significance (p <

5.03 10�8) in a nearby variant (within 500kbp) and it had the possible association (p < 1.03 10�4) in Japanese GWAS. Of these loci,

lead variants of 3 loci were in strong LD (r2 > 0.9) with missense variants and excluded from the colocalization analysis.

For evaluation of eQTL signal colocalization with GWAS signals, we applied coloc (Giambartolomei et al., 2014), a Bayesian frame-

work. We tested for 500 kbp windows centered on GWAS top variants and considered PP. H4 (posterior probability of shared causal

variant)R 0.8 as a significant colocalization. We also required at least 1 genome-wide significant eQTL association in the tested re-

gion. With this threshold, 18 loci showed significant colocalization with at least 1 eQTL, which were also manually confirmed.

Colocalization of loci with multiple causal variants is difficult to detect with coloc (Hormozdiari et al., 2016). Therefore, we also uti-

lized eCAVIAR (Hormozdiari et al., 2016), a Bayesian fine-mapping approach that can deal withmultiple causal variants.We tested for

100 variants centered on GWAS top variants. In their original work, the authors defined CLPP (a metrics for colocalization, that de-

pends on the complexity of LD)R 0.01 as significant colocalization threshold for eQTL and GWAS.When we compared coloc PP. H4

and eCAVIAR CLPP by rheumatoid arthritis GWAS data colocalization analysis with ImmuNexUT eQTL (Figure S4G), we observed

that CLPP threshold 0.01 resulted in a relatively high frequency for false positives (we defined PP.H4 < 0.25 as true negative, and

specificity = 0.81 with CLPP threshold 0.01, while specificity = 0.97 with CLPP threshold 0.03). Here our aim was to use eCAVIAR

as complemental method to coloc while keeping low false positive ratio, thus we set CLPP R 0.03 as a threshold for significant
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colocalization. eCAVIAR reproduced the same colocalization as coloc in 14 loci and revealed 2 additional colocalization loci (CDH1

and GPX3).

Collectively we considered 20 loci as significant colocalizations. For each locus, if 2 or more genes were colocalized, the gene with

the best colocalization posterior probability (CLPP for 2 loci and PP. H4 for the other loci) was prioritized.

For visualization, we classified colocalizations into those in the top 30th percentiles of posterior probability (corresponds to

PP.H4 R 0.93 and CLPP R 0.095), top 30-70th percentiles of posterior probability (corresponds to 0.93 > PP.H4 R 0.87 and

0.095 > CLPP R 0.048) and the remaining (Figure 7A). The list of colocalized genes, Japanese GWAS top variants and nearby

genome-wide significant variants in different studies are summarized in Table S7.

Statistical test
The statistical test performed are indicated in the figure legends or STARMethods. Throughout the analyses, multiple test correction

was performed with Benjamini-Hochberg procedure to obtain corrected q-values unless otherwise indicated.
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Figure S1. Sorting strategy for subdivided immune cell subsets, related to Figure 1

(A–E) Representative FACS plots describing gating strategies for CD4+ T cells (A), B cells and CD8+ T cells (B), monocytes and dendritic cells (C), NK cells (D) and

LDG (E) in ‘‘phase 2’’ of our study (STAR Methods). See Table S8 for full description of subset names. See Table S9 for flow-cytometry antibodies used in

this study.
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Figure S2. Characterization of gene-expression data, related to Figure 1

(A) Full results of cytokine pathway enrichment analysis of ImmuNexUT gene modules. ImmuNexUT gene modules (row in bottom panel) were compared to gene

modules made from the cytokine-stimulated fibroblast-like synoviocytes (FLS) dataset (column) (STAR Methods). Upper panel shows the associations of

cytokine stimulated FLS gene modules with the types of stimulation. Linear regression b value comparing the eigenvector of each module in stimulated FLS from

non-stimulated FLS are plotted. In the bottom panel, ImmuNexUT gene modules (row) are arranged in the same order as Figure 1E, and the log10 FDR of

overrepresentation analysis with FLS modules are depicted. Representative ImmuNexUT modules that showed enrichment in specific stimulation-associated

FLS modules are annotated on the right.

(B) Hierarchical clustering of donors based on eigenvectors of representative gene modules. Gene modules upregulated in IMDs and annotated in Figure 1E are

utilized for clustering.

(C) Distribution of autoantibody positive cases. Each row represents autoantibodies representative in IIM and SSc. MDA5, anti-melanoma differentiation-

associated gene 5 antibody. ARS, anti-aminoacyl tRNA synthetase antibody. RNAP-III, anti-RNA polymerase III antibody. RNP, anti-ribonucleoprotein antibody.

(D) Distribution of the number of diseases in which genes were differentially expressed compared to healthy volunteers. The difference was considered to be

significant if it had a mash local false sign rate (LFSR) of < 5%. Results of 19 cell subsets are plotted together (STAR Methods).
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Figure S3. Validation of genotype data, optimization of the number of latent factors, and characterization of immune cell eQTLs, related to

Figure 2

(A) Principal component analysis of ImmuNexUT genotype data together with 1000 genomes project phase 3 data. EAS, East Asian. AFR, African. AMR, AdMixed

American. EUR, European. SAS, South Asian.

(B and C) Allele frequency comparison of SNVs (B) and indels (C) between ImmuNexUT and Tohoku Medical Megabank Organization (ToMMo) data (Tadaka

et al., 2018).

(D and E) Number of significant eGenes (FDR < 0.05) in cell types with > 350 samples (D) and % 350 samples (E) with incrementation of PEER factors (STAR

Methods). Red dotted lines indicate the number of PEER factors utilized for eQTL analysis.

(F) The number of significant eGenes colored by their sharing by cell types or lineages. Here, each cell is classified into 1 of 3 lineages: T/NK cells, B cells and

myeloid cells. When eGenes are shared among cell types in only one lineage, we classified them as ‘‘lineage specific.’’

(G) Enrichment of eQTLs in promoters or enhancers of the corresponding cell types from Roadmap data (STAR Methods). Expression QTLs are stratified by

absolute values of effect sizes into equal 3 groups.

(H) Enrichment analysis of top eVariants in enhancer regions from Roadmap data. Cell types in Roadmap samples are labeled with color. Our eQTL variants

showed enrichment especially in blood, thymus or spleen samples that are abundant in immune cells. GI, gastrointestinal tract.

(I and J) Enrichment of top eVariants in enhancers (H) and promoters (I) of representative immune cells from Roadmap project.

(K) Enrichment of IMD-specific eQTLs and eQTLs significant in both healthy volunteers and IMD patients to GWAS top variants. Bars indicate 95% CI.
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Figure S4. Characterization of context-dependent eQTL and association of ImmuNexUTwith immune disease genetics, related to Figures 5,

6, and 7

(A) Scenario of context-dependent eQTLs, related to Figure 5. Interferon activates expression of some genes via epigenomic remodeling (Park et al., 2017). When

chromatin is remodeled and the interferon signature response element (ISRE) is opened for transcription factor binding, the effect of the SNP in ISRE for down-

stream gene expression becomes evident. Here, the eQTL effect size partially depends on the fraction of remodeled cells. Consequently, the eQTL effect size is

now dependent on interferon signature gene expression (e.g., STAT1) that reflects the interferon signature strength heterogeneity between donors. Similar eQTL

effect heterogeneity can be observed when samples are heterogenous due to the cell type mixture or different degrees of various signal strengths.

(B) Comparison of differential expression P values of top pGenes (the most significantly interacted proxy gene for each context-dependent eQTL), related to

Figure 5. Differential expression P values are calculated by comparing the gene expression between each IMD and healthy subjects. x axis reflects an empirical

distribution of P values from all expressed genes.

(C) The number of significant context-dependent eQTLs with or without regressing disease variance from the genome-wide gene expression data, related to

Figure 5. Color of each dot indicates cell type as illustrated in Figure 1A. Two-sided Wilcoxon signed rank test.

(D) Representative result of gene set enrichment analysis of context-dependent eGenes (STAR Methods), related to Figure 5. Bars indicate 95% CI. PBMC,

peripheral blood mononuclear cell. DC, dendritic cell.

(E) Association significance of meta-analysis annotation (Meta tissue, left most) or each cell type eQTL annotation with polygenic GWAS signals in tissue-by-

tissue stratified LD score regression analysis, related to Figure 6A. *, FDR < 0.01; **, Bonferroni significant.

(F) Cell-type specific eQTL coincided with cell-type specific open chromatin regions, related to Figure 7B. Immune cell ATAC-seq peaks (Calderon et al., 2019)

around SLE GWAS variant rs36059542 locus is shown. Only plasmablasts have open chromatin status around plasmablast specific eQTL, rs62266700. These 2

variants are in strong LD (r2 = 0.85) in Japanese. Among 9 SNPs in LDwith both of these variants, 2 SNPs (highlighted with red) coincided with ATAC-seq peaks of

plasmablasts, raising the possibility of causal variants.

(G) Comparison of themetrics for colocalization outputted by coloc (PP. H4) and eCAVIAR (CLPP), related to Figure 7A and STARMethods. Here we assessed the

colocalization of Japanese rheumatoid arthritis GWAS top variants and ImmuNexUT eQTLs with coloc and eCAVIAR.
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